Math, asked by chavanpandu609, 9 hours ago

Evaluate ( cos²45°•sec²30°) (sin²30°+4cot²45°- sec²60°)​

Answers

Answered by CopyThat
12

Answer:

  • 2/3.

Step-by-step explanation:

We have,

⇒ (cosec²45° sec²30°) (sin²30° + 4cot²45° - sec²60°)

We know,

⇒ cosec 45° = √2

⇒ sec 30° = 2/√3

⇒ sin 30° = 1/2

⇒ cot 45° = 1

⇒ sec 60° = 1

Substituting,

⇒ [(√2)².[2/√3]²].[(1/2) + 4(1)² . (2)²]

⇒ [2(4/3)] [1/4 + 4 - 4]

⇒ [3(4/3)(1/4)]

2/3

2/3 is the value of the expression.

Learn more:

⇒ sin 0° = 0  

⇒ sin 30° = 1/2  

⇒ sin 45° = 1/√2  

⇒ sin 60° = √3/2  

⇒ sin 90° = 1

=> cos Ф is the reverse of sin Ф

⇒ cos 0° = 1  

⇒ cos 30° = √3/2  

⇒ cos 45° = 1/√2  

⇒ cos 60° = 1/2  

⇒ cos 90° = 0

=> tan Ф = sin Ф/cos Ф

⇒ tan 0° = sin 0°/cos 0°  

⇒ tan 0° = 1/0  

⇒ tan 0 ° = 1

⇒ tan 30° = sin 30°/cos 30°  

⇒ tan 30° = (1/2)/(√3/2)  

⇒ tan 30° = 1/√3

⇒ tan 45° = sin 45°/cos°  

⇒ tan 45° = (1/√2)/(1/√2)  

⇒ tan 45° = 1

⇒ tan 60° = sin 60°/cos 60°  

⇒ tan 60° = (√3/2)/((1/2)  

⇒ tan 60° = √3

⇒ tan 90° = sin 90°/cos 90°  

⇒ tan 90° = 1/0  

⇒ tan 90° = undefined

Others:

=> tan Ф = 1/cot Ф  

=> sin Ф = 1/cosec Ф  

=> sec Ф = 1/cos Ф

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given Trigonometric expression is

\rm :\longmapsto\: [{cos}^{2}45\degree  {sec}^{2}30\degree ]\bigg[ {sin}^{2}30\degree  +  {4cot}^{2}45\degree  -  {sec}^{2}60\degree \bigg]

We know, Trigonometric table of standard angles,

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

We have,

\boxed{ \tt{ \: cos45\degree  =  \frac{1}{ \sqrt{2} }}}

\boxed{ \tt{ \: sec30\degree  =  \frac{2}{ \sqrt{3} }}}

\boxed{ \tt{ \: sin30\degree  =  \frac{1}{2}}}

\boxed{ \tt{ \: cot45\degree  = 1}}

\boxed{ \tt{ \: sec60\degree  = 2}}

So, on substituting the values in

\rm :\longmapsto\: [{cos}^{2}45\degree  {sec}^{2}30\degree ]\bigg[ {sin}^{2}30\degree  +  {4cot}^{2}45\degree  -  {sec}^{2}60\degree \bigg]

we get

\rm \:  =  \: {\bigg[\dfrac{1}{ \sqrt{2} } \bigg]}^{2} {\bigg[\dfrac{2}{ \sqrt{3} } \bigg]}^{2} \bigg( {\bigg[\dfrac{1}{2} \bigg]}^{2} + 4 {(1)}^{2} -  {(2)}^{2}  \bigg)

\rm \:  =  \:\dfrac{1}{2}  \times \dfrac{4}{3}  \times \bigg[\dfrac{1}{4}  + 4 - 4\bigg]

\rm \:  =  \:\dfrac{1}{2}  \times \dfrac{4}{3}  \times \dfrac{1}{4}

\rm \:  =  \:\dfrac{1}{6}

Similar questions