Math, asked by dan1108, 8 months ago

evaluate: cos²60°+4sec²30°- tan²45°/sin²30°+cos²30°​

Answers

Answered by Anonymous
8

To find:

\sf{The \ value \ of \ \dfrac{cos^{2}60^\circ+4sec^{2}30^\circ-tan^{2}45^\circ}{sin^{2}30^\circ+cos^{2}30^\circ}}

Solution:

\sf{Note:}

\sf{cos60^\circ=\dfrac{1}{2},}

\sf{sec30^\circ=\dfrac{2}{\sqrt3},}

\sf{tan45^\circ=1,}

\sf{sin30^\circ=\dfrac{1}{2},}

\sf{cos30^\circ=\dfrac{\sqrt3}{2}}

\sf{\leadsto{\dfrac{cos^{2}60^\circ+4sec^{2}30^\circ-tan^{2}\circ}{sin^{2}30^\circ+cos^{2}30^\circ}}}

\sf{Substituting \ the \ values}

\sf{\leadsto{\dfrac{(\frac{1}{2})^{2}+4\times(\frac{2}{\sqrt3})^{2}-(1)^{2}}{(\frac{1}{2})^{2}+(\frac{\sqrt3}{2})^{2}}}}

\sf{\leadsto{\dfrac{\frac{1}{4}+\frac{16}{3}-1}{\frac{1}{4}+\frac{3}{4}}}}

\sf{\leadsto{\dfrac{\frac{3+64-12}{12}}{\frac{4}{4}}}}

\sf{\leadsto{\dfrac{55}{12}}}

\sf\purple{\tt{\therefore{The \ value \ of \ \dfrac{cos^{2}60^\circ+4sec^{2}30^\circ-tan^{2}45^\circ}{sin^{2}30^\circ+cos^{2}30^\circ}}}}

\sf\purple{\tt{is \ \dfrac{55}{12}.}}

Similar questions