Math, asked by ai74xd, 9 months ago

Evaluate Cos45°÷Sec30°+Cosec30°​

Answers

Answered by Anonymous
9

\huge\green{★ SOLUTION : }

Given that,

 \frac{ \cos \: 45 }{ \sec \: 30 +  \csc \: 30  }

Values of

  • cos 45° = 1/√2
  • sec 30° = 2/√3
  • cosec 30° = 2

 ⟹\frac{ \frac{1}{ \sqrt{2} } }{ \frac{2}{ \sqrt{3}  }  + 2}

 ⟹\frac{ \frac{1}{ \sqrt{2} } }{ \frac{2 + 2 \sqrt{3} }{ \sqrt{3} } }

⟹ \frac{1}{ \sqrt{2} }  \times  \frac{ \sqrt{3} }{2 + 2  \sqrt{3}  }

⟹ \frac{1}{ \sqrt{2} }  \times  \frac{ \sqrt{3} }{2(1 +  \sqrt{3}) }

 ⟹\frac{ \sqrt{2} }{ \sqrt{2}  \times  \sqrt{2} }  \times  \frac{ \sqrt{3}  \times ( \sqrt{3}  - 1)}{2( \sqrt{3}  + 1)( \sqrt{3}  - 1)}

 ⟹ \frac{ \sqrt{6}( \sqrt{3}  - 1) }{4(  {( \sqrt{3}) }^{2}  -  {(1)}^{2} ) }

 ⟹\frac{ \sqrt{6}( \sqrt{3} - 1)  }{4(3 - 1)}

 ⟹\frac{ \sqrt{6}( \sqrt{3}  - 1) }{4(2)}

⟹ \frac{ \sqrt{6} ( \sqrt{3}  - 1)}{8}

 \boxed{∴ \:  \frac{ \cos \: 45}{ \sec30 \:  +  \csc \: 30  } =  \frac{ \sqrt{6} ( \sqrt{3}  - 1)}{8}  }

Step-by-step explanation:

<marquee behaviour-move><font color="green pink"><h1># PLEASE MARK ME AS BRAINLIEST✌✌✌</ ht></marquee>

Similar questions