Math, asked by princeakram83, 6 months ago

evaluate cos45°
______
sec30°+cosec60°

Answers

Answered by luckyathwani1303
7

Answer:

√3/4√2

Step-by-step explanation:

Cos45°=1/√2

sec30°=2/√3

cosec60°=2/√3

1/√2

_________

2/√3+2/√3

=1/√2

_______

4/√3

= 1/√2×√3/4 = √3/4√2

Attachments:

Anonymous: Awesome ❤️
Answered by Anonymous
25

\huge\bf\underline{\underline{\pink{A}\orange{N}\blue{S}\red{W}\green{E}\purple{R}}}

 \huge \:  \frac{ \cos45° }{ \sin30° +  \csc60° }

As we know;

 \large \cos45° =  \frac{1}{ \sqrt{2} }

 \large \ \sec 30° =  \frac{2}{ \sqrt{3} }

 \large \csc60° =  \frac{2}{ \sqrt{3} }

Now let us evaluate -

 \large =  \ \frac{ \frac{1}{ \sqrt{2} } }{ \frac{2}{ \sqrt{3} +  \frac{2}{ \sqrt{3} }  } }

\large \:   = \frac{ \frac{1}{ \sqrt{2} } }{ \frac{2 + 2}{ \sqrt{3} } }

 \large =  \frac{ \frac{1}{ \sqrt{2} } }{ \frac{4}{ \sqrt{3} } }

 \large=  \frac{1}{ \sqrt{2} }  \times  \frac{ \sqrt{3} }{2}

 \large=  \frac{ \sqrt{3} }{4 \sqrt{2} }

Therefore;

\huge \:  \frac{ \cos45° }{ \sin30° +  \csc60° }  = \frac{ \sqrt{3} }{4 \sqrt{2}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\large\bf{\underline{\purple{Hope \:  It \:  Helps  \: You!}}}


Anonymous: Fabulous ❤️
Anonymous: it should be 1/√2 x √3/4. please correct it :)
Similar questions