Math, asked by lakhantudu0456, 10 months ago

evaluate cos48 × cos 42 - sin48 × sin42​

Answers

Answered by neemagupta824
4

Answer:

cos48 .cos42 -sin48. sin42

cos48. cos42 -cos (90-48).cos(90-42)

cos48. cos42 - cos 48. cos 42

1

Hope it helps you

plz follow me

Answered by sachinarora2001
2

Given ÷

EVALUATE.

Cos48 x cos 42 - Sin 48 x sin 42

________________________

Formulas used

cos (90°-A) => Sin A

sin (90°-A) => cos A

_________________________

Solution..-

 \cos(48)  \times  \cos(42)  -  \sin(48)  \times  \sin(42)  \\  \\ =  >  >   \frac{ \cos(48) }{ \sin(42) }  -  \frac{  \sin(48) }{  \cos(42)  }  \\  \\  =  >  >  \frac{ \cos(48) }{ \ \sin(90 - 42)  }  -  \frac{ \sin(48) }{  \cos(90 - 48) }  \\  \\  =   >  >  \frac{ \cos(48) }{ \cos(48) }  -  \frac{ \sin(48) }{ \sin(48) }  \\  \\  =  >  > 1 - 1 \\  \\  =  >  > 0

__________________________

Others Formulas related to this...

(1)sin(90°-A)= cosA

(2) Cos(90°-A)= Sin A

(3)tan(90°-A) = cot A

(4)Cot (90°-A)= tanA

(5)Cosec(90°-A)=SecA

(6) Sec(90°-A)= cosec A

__________________________

Thanks

Similar questions