Math, asked by khbabaychan6213, 11 months ago

evaluate cos48cos42-sin48sin42

Answers

Answered by spiderman2019
2

Answer:

0

Step-by-step explanation:

Cos48Cos42 - Sin48Sin42

= Cos(48 + 42)  ( ∵ CosACosB - SinASinB = Cos(A+B))

= Cos90°

= 0

Answered by JeanaShupp
0

The value of \cos48^{\circ}\cos42^{\circ}-\sin48^{\circ}\sin42^{\circ} is 0.

Explanation:

We know that :

cos A= sin(90°- A)                  (1)

sin A = cos (90°- A)             (2)

The given expression : \cos48^{\circ}\cos42^{\circ}-\sin48^{\circ}\sin42^{\circ}

By using (1) and (2) , This will become:

\cos48^{\circ}\sin(90^{\circ}-42^{\circ})-\sin48^{\circ}\cos (90^{\circ}-48^{\circ})

=\cos48^{\circ}\sin48^{\circ}-\sin48^{\circ}\cos48^{\circ}

=0

Hence, the value of the given expression is 0.

# Learn more :

Cos²10+Cos²20+Cos²30+Cos²40+Cos²50+Cos²60+Cos²70+Cos²80+Cos²90.

https://brainly.in/question/14157389

Similar questions