Math, asked by utkarshsingh7992025, 9 months ago

evaluate cosec 25 degree - sec 65 degree ​

Answers

Answered by prince5132
5

GIVEN :-

  • Cosec 25° - sec 65° .

TO FIND :-

  • The value of Cosec 25° - sec 65° .

SOLUTION :-

☛ For the above value of cosec 25° and sec 65°. See the trigonometric ratio chart.

\Large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 65^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0  \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $    \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ &  1 &  $ \dfrac{1}{ \sqrt{3} } $ &0 \\  \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\  \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1  \\  \cline{1 - 6}\end{tabular}}

☛ From the about trigonometric ratios chart we get the value of,

◉ cosec 25° = 7.55

◉ sec 65° = 2

☛ Now we have to find the value of Cosec 25° - sec 65° . so let's substitute the above values,

➬ Cosec 25° - sec 65° .

➬ 7.55 - 2

5.55

Hence the value of Cosec 25° - sec 65° is 5.55.

ADDITIONAL INFORMATION :-

◉ Some some trigonometry formulas ,

➬ sin θ = Opposite side/Hypotenuse.

➬ cos θ = Adjacent side/Hypotenuse.

➬ tan θ = Perpendicular/Base.

tan θ = sin θ/cos θ

Answered by rahulkrishnasu
0

Answer:

cosec 25° = 7.55}

                              (from trigonometric ratio chart)

sec 65°     = 2 }    

NOW,

➬ Cosec 25° - sec 65° .

= 7.55 - 2

=5.55

Similar questions