Math, asked by shreyaappana2002, 3 months ago

Evaluate
cosecx-Cotx/x
limit

x_0​

Answers

Answered by mathdude500
2

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

 \boxed{ \red{ \: {(1). \: 1 - cos2x = 2 {sin}^{2} x}}}

 \boxed{ \red{ \: {(2). \:sin2x = 2 \: sinx \: cosx}}}

 \boxed{ \red{ \: {(3). \:\tt \ \: \tt \:\lim_{x\to0} \:\dfrac{tanx}{x}  = 1}}}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\tt \ \: :  ⟼ \tt \:\lim_{x\to0} \:\dfrac{cosecx \:  -  \: cotx}{x}

☆ On substituting the value of x directly, we get indeterminant form.

\tt \ \: :  ⟼ \tt \:\lim_{x\to0} \:\dfrac{\dfrac{1}{sinx}  - \dfrac{cosx}{sinx} }{x}

\tt \ \: :  ⟼ \tt \:\lim_{x\to0} \:\dfrac{1 - cosx}{x \:  \times sinx}

\tt \ \: :  ⟼ \tt \:\lim_{x\to0} \:\dfrac{2 \:  {sin}^{2}\dfrac{x}{2}  }{x \:  \times 2 \: sin\dfrac{x}{2}  \: cos\dfrac{x}{2} }

\tt \ \: :  ⟼ \tt \:\lim_{x\to0} \:\dfrac{tan \: \dfrac{x}{2} }{x}

\tt \ \: :  ⟼ \tt \:\lim_{x\to0} \:\dfrac{tan \: \dfrac{x}{2} }{\dfrac{x}{2}  \times 2}

\tt \ \: :  ⟼ \dfrac{1}{2}

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions