Math, asked by Sonali8212, 1 year ago

Evaluate:∫cosx/((2+sinx)(3+4sinx))dx

Answers

Answered by Pitymys
2

We have to evaluate  \int  {\frac{\cos x}{(2+\sin x)(3+4\sin x)}} \, dx   .

Make the substitution,  \sin x=t\\<br />\cos x dx=dt

The integral becomes,

 \int  {\frac{\cos x}{(2+\sin x)(3+4\sin x)}} \, dx =\int  {\frac{dt}{(2+t)(3+4t)}} \\<br />\int  {\frac{\cos x}{(2+\sin x)(3+4\sin x)}} \, dx =\frac{1}{5}\int [\frac{4}{3+4t}-\frac{1}{2+t}]dt\\<br />\int  {\frac{\cos x}{(2+\sin x)(3+4\sin x)}} \, dx =\frac{1}{5} (\ln |3+4t|-\ln |2+t|)+C\\<br />\int  {\frac{\cos x}{(2+\sin x)(3+4\sin x)}} \, dx =\frac{1}{5} \ln |\frac{3+4t}{2+t}|+C

Back substituting,

 \int  {\frac{\cos x}{(2+\sin x)(3+4\sin x)}} \, dx =\frac{1}{5} \ln |\frac{3+4\sin x}{2+\sin x}|+C

Similar questions