Math, asked by neelammejar2, 1 year ago

Evaluate cube root of 0.027 upon 0.008 / square root of 0.09 upon 0.04 -1

Answers

Answered by maheshpatil19101983
71

Hii friends

I hope this answer is correct

This step like you

FRIENDS

Attachments:
Answered by aroranishant799
5

Answer:

The required answer is 3.

Step-by-step explanation:

Concept:

The factor we multiply by itself three times to obtain a number is its cube root. 3 cube root of, end cubic root is the symbol for the cube root. The opposite of cubing an integer is to get its cube root.

Given:

It is provided that \frac{\sqrt[3]{\frac{0.0127}{0.0008}}}{{\sqrt[]{\frac{0.09}{0.04}-1}}} \\

To find:

We have to evaluate \frac{\sqrt[3]{\frac{0.0127}{0.0008}}}{{\sqrt[]{\frac{0.09}{0.04}-1}}} \\.

Solution:

We have,

\frac{\sqrt[3]{\frac{0.0127}{0.0008}}}{{\sqrt[]{\frac{0.09}{0.04}-1}}} \\

Firstly we have to resolve all the provided terms,

&\mathbf{0 . 0 2 7}=27 / 1000=(3 \times 3 \times 3) /(10 \times 10 \times 10)=3^{3} / 10^{3}=(3 / 10)^{3}=(0.3)^{3} \\

&\mathbf{0 . 0 0 8}=8 / 1000=(2 \times 2 \times 2) /(10 \times 10 \times 10)=2^{3} / 10^{3}=(2 / 10)^{3}=(0.2)^{3} \\

&\mathbf{0 . 0 9}=9 / 100=(3 \times 3) /(10 \times 10)=(3 / 10)^{2}=(0.3)^{2} \\

&0.04=4 / 100=(2 \times 2) /(10 \times 10)=(2 / 10)^{2} \\&=(0.2)^{2} \\

Now,

\sqrt[3]{\frac{0.027}{0.08}}=\sqrt[3]{\frac{(0.3)^{3}}{(0.2)^{3}}} \\

&\frac{0.3}{0.2}=1.5 \\

\sqrt{\frac{0.09}{0.04}}=\sqrt{\frac{(0.3)^{2}}{(0.2)^{2}}} \\

&\frac{0.3}{0.2}=1.5 \\

Thus,

\frac{\sqrt[3]{\frac{0.0127}{0.0008}}}{{\sqrt[]{\frac{0.09}{0.04}-1}}} \\

= \frac{1.5}{(1.5)-1}

=\frac{1.5}{(0.5)}

&=3

The required answer is 3.

#SPJ3

Similar questions