Math, asked by Anonymous, 1 year ago

Evaluate!!


Definite integrals..


Please Help!!!!

Attachments:

Answers

Answered by rohitkumargupta
9

HELLO DEAR,



\bold{I = \int\limits^1_0 {\frac{log(1 + x)}{1 + x^2}}\,dx}



let x= tanA {\Rightarrow } dx = sec²A*dA



Also, [x = 1 {\Rightarrow } A = π/4] and [x = 0 {\Rightarrow } A = 0 ]



\bold{\therefore, I = \int\limits^{\pi/4}_0 {\frac{tan(1 + tanA)}{1 + tan^2A}*sec^2A}\,dA}



\bold{\Rightarrow I = \int\limits^{\pi/4}_0 {\frac{log(1 + tanA)}{sec^2A}*sec^2A}\,dA}



\bold{\Rightarrow I = \int\limits^{\pi/4}_0 {log(1 + tanA)}\,dA}------------( 1 )



using property , \bold{\int\limits^a_0 f(x) \,dx= \int\limits^a_0 f(a - x)\,dx}



so, \bold{\Rightarrow I = \int\limits^{\pi/4}_0 {log[1 + tan(\pi/4 - A)]}\,dA}



we know, tan(A - B) = [tanA - tanB]/[1 + tanAtanB]



so, tan(π/4 - A) = (1 - tanA)/(1 + tanA)


[as tan(π/4) = 1]



\bold{\Rightarrow I = \int\limits^{\pi/4}_0 {log[1 + (1 - tanA)/(1 + tanA)]}\,dA}



\bold{\Rightarrow I = \int\limits^{\pi/4}_0 {log\frac{2}{1 + tanA}}\,dA}



\bold{\Rightarrow I = \int\limits^{\pi/4}_0 [{log2 - log(1 + tanA)}]\,dA}



\bold{\Rightarrow I = \int\limits^{\pi/4}_0 {log2}\,dA - \int\limits^{\pi/4}_0{log(1 + tanA)}\,dA}



\bold{\Rightarrow 2I = \int\limits^{\pi/4}_0 {log2}\,dA}------from( 1 )



\bold{\Rightarrow 2I = log(2)(\frac{\pi}{4} - 0)}



\bold{\Rightarrow I = log(2)\frac{\pi}{8}}



I HOPE ITS HELP YOU DEAR,


THANKS

Similar questions