Math, asked by alakaavere26, 2 months ago

Evaluate :dx/ 3-4 sin2x​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\displaystyle\int \sf \:\dfrac{dx}{3 - 4 \: sin2x}

\rm \:  \:  =  \: \displaystyle\int \sf \:\dfrac{dx}{3 - 4 \: \dfrac{2tanx}{1 +  {tan}^{2}x }}

\rm \:  \:  =  \: \displaystyle\int \sf \:\dfrac{dx}{ \: \dfrac{3 + 3 {tan}^{2}x -  8tanx}{1 +  {tan}^{2}x }}

\rm \:  \:  =  \: \displaystyle\int \sf \:\dfrac{1 +  {tan}^{2}x}{3 {tan}^{2}x + 3 - 8tanx } dx

\rm \:  \:  =  \: \displaystyle\int \sf \:\dfrac{{sec}^{2}x}{3 {tan}^{2}x + 3 - 8tanx } dx

Now we use substitution method to solve the above integral

 \red{\rm :\longmapsto\:Let \: tanx = y} \\  \red{\rm :\longmapsto\: {sec}^{2}x \: dx = dy}

\rm \:  \:  =  \: \displaystyle\int \sf \:\dfrac{dy}{3 {y}^{2}  - 8y + 3}

\rm \:  \:  =  \: \dfrac{1}{3} \displaystyle\int \sf \:\dfrac{dy}{ {y}^{2}  - \dfrac{8}{3} y + 1}

Using completing squares method

\rm \:  \:  =  \: \dfrac{1}{3} \displaystyle\int \sf \:\dfrac{dy}{ {y}^{2}  - \dfrac{8}{3} y + \dfrac{16}{9}  - \dfrac{16}{9}  + 1}

\rm \:  \:  =  \: \dfrac{1}{3} \displaystyle\int \sf \:\dfrac{dy}{  {\bigg(y - \dfrac{4}{3}  \bigg) }^{2} +  \dfrac{9 - 16}{9}}

\rm \:  \:  =  \: \dfrac{1}{3} \displaystyle\int \sf \:\dfrac{dy}{  {\bigg(y - \dfrac{4}{3}  \bigg) }^{2}  -   \dfrac{7}{9}}

\rm \:  \:  =  \: \dfrac{1}{3} \displaystyle\int \sf \:\dfrac{dy}{  {\bigg(y - \dfrac{4}{3}  \bigg) }^{2}  -  {\bigg(\dfrac{ \sqrt{7} }{3} \bigg) }^{2} }

\rm \:  \:  =  \: \dfrac{1}{3} \times \dfrac{1}{2 \times \dfrac{ \sqrt{7} }{3} }log\bigg(\dfrac{y - \dfrac{4}{3}  - \dfrac{ \sqrt{7} }{3} }{y - \dfrac{4}{3} + \dfrac{ \sqrt{7} }{3}  }  \bigg)  + c

 \:  \:  \:  \:  \: \red{\bigg \{ \because \: \displaystyle\int \sf \:\dfrac{dx}{ {x}^{2} -  {a}^{2} } = \dfrac{1}{2a}log\bigg(\dfrac{x - a}{x + a}\bigg) + c   \bigg \}}

\rm \:  \:  =  \: \dfrac{1}{2 \sqrt{7} } log\bigg(\dfrac{3y - 4 -  \sqrt{7} }{3y - 4 +  \sqrt{7} } \bigg)  + c

\rm \:  \:  =  \: \dfrac{1}{2 \sqrt{7} } log\bigg(\dfrac{3tanx - 4 -  \sqrt{7} }{3tanx - 4 +  \sqrt{7} } \bigg)  + c

Additional Information :-

\green{\boxed{ \tt \:\displaystyle\int \sf \:\dfrac{dx}{ {x}^{2}  +  {a}^{2} } = \dfrac{1}{a} {tan}^{ - 1} \dfrac{x}{a}  + c}}

\green{\boxed{ \tt \:\displaystyle\int \sf \:\dfrac{dx}{ \sqrt{ {a}^{2}  -  {x}^{2} } } =  {sin}^{ - 1}\dfrac{x}{a} + c}}

\green{\boxed{ \tt \:\displaystyle\int \sf \:\dfrac{dx}{ \sqrt{ {x}^{2}  -  {a}^{2} } } =  log |x +  \sqrt{ {x}^{2}  -  {a}^{2} } | + c}}

\green{\boxed{ \tt \:\displaystyle\int \sf \:\dfrac{dx}{ \sqrt{ {x}^{2} +  {a}^{2} } } =  log |x +  \sqrt{ {x}^{2} + {a}^{2} } | + c}}

Similar questions