Math, asked by anasmohammadarif, 1 month ago

Evaluate ∫e to the power x (sin(4x))dx

Answers

Answered by senboni123456
4

Step-by-step explanation:

We have,

 \tt{  Let \:  \: I = \int {e}^{x}  \sin(4x) dx }\\

 \sf{\implies  I =  {e}^{x} \int  sin(4x) dx -  \int \bigg \{ \frac{d}{dx} ( {e}^{x} ) \int \: sin(4x) \: dx \bigg \}dx }\\

 \sf{\implies  I =   - {e}^{x}  \cdot\frac{ cos(4x) }{4}  +   \int  {e}^{x}  \cdot\frac{cos(4x)}{4} dx }\\

 \sf{\implies  I =  -  \frac{1}{4}  {e}^{x} cos(4x)   +   \frac{1}{4}  \int  {e}^{x}  \: cos(4x)dx }\\

 \sf{\implies  I =  -  \frac{1}{4}  {e}^{x} cos(4x)   +   \frac{1}{4}  \:  {e}^{x}  \int  \: cos(4x)dx -  \frac{1}{4}  \int \bigg \{ \frac{d}{dx} ( {e}^{x}) \int \: cos(4x) \: dx \bigg \}dx  }\\

 \sf{\implies  I =  -  \frac{1}{4}  {e}^{x} cos(4x)   +   \frac{1}{4}  \:  {e}^{x}   \cdot  \:  \frac{sin(4x)}{4}-  \frac{1}{4}  \int {e}^{x}  \cdot\: \frac{ sin(4x)}{4} dx  }\\

 \sf{\implies  I =  -  \frac{1}{4}  {e}^{x} cos(4x)   +   \frac{1}{16}  \:  {e}^{x}    sin(4x)-  \frac{1}{16}  \int {e}^{x}  sin(4x) dx  }\\

 \sf{\implies  I =  -  \frac{1}{4}  {e}^{x} cos(4x)   +   \frac{1}{16}  \:  {e}^{x}    sin(4x)-  \frac{1}{16}  \:  I  }\\

 \sf{\implies  I  +  \frac{1}{16}  \:  I  =  -  \frac{1}{4}  {e}^{x} cos(4x)   +   \frac{1}{16}  \:  {e}^{x}    sin(4x) }\\

 \sf{\implies    \frac{17}{16}  \:  I  =  -  \frac{1}{4}  {e}^{x} cos(4x)   +   \frac{1}{16}  \:  {e}^{x}    sin(4x) }\\

 \sf{\implies    17 \:  I  =  -  4  {e}^{x} cos(4x)   +    \:  {e}^{x}    sin(4x) }\\

 \sf{\implies     \:  I  =  \frac{1}{17}      \{  {e}^{x}    sin(4x) } -  4  {e}^{x} cos(4x)  \}\\

 \sf{\implies     \:  I  =  \frac{ {e}^{x} }{17}      \{    sin(4x) } -  4   cos(4x)  \}\\

 \sf{\implies     \:  I  =  \frac{ {e}^{x} }{ \sqrt{ 17}}       \bigg\{     \frac{1}{ \sqrt{17} } sin(4x)  -   \frac{4}{ \sqrt{17} }    cos(4x)   \bigg\}}\\

Let \rm{tan(\alpha)=4}

So,

\rm{cos(\alpha)=\dfrac{1}{\sqrt{17}}\,\,\,\,\&\,\,\,\,    sin(\alpha)=\dfrac{4}{\sqrt{17}}}

So,

 \sf{\implies     \:  I  =  \frac{ {e}^{x} }{ \sqrt{ 17}}      \{     sin(4x) cos( \alpha) -      cos(4x)sin( \alpha)   \}}\\

 \sf{\implies     \:  I  =  \frac{ {e}^{x} }{ \sqrt{ 17}}   \:     sin(4x - \alpha) }\\

 \sf{\implies     \:  I  =  \frac{ {e}^{x} }{ \sqrt{ 17}}   \:     sin(4x - tan^{ - 1} (4)) }\\

Similar questions