Evaluate each of the following 2 sin² 30° − 3cos² 45° + tan² 60°
Answers
Answered by
4
SOLUTION:
Given :
2 sin² 30° - 3cos² 45° + tan² 60°
= 2(1/2)² - 3(1/√2)² + (√3)²
[sin 30° = ½ , cos 45° =1/√2, tan 60° = √3]
= 2(1/4) - 3(1/2) + 3
= (½ - 3/2) + 3
= (1 - 3)/2 + 3
= - 2/2 + 3
= -1 + 3 = 2
2 sin² 30° - 3cos² 45° + tan² 60° = 2
Hence , 2 sin² 30° - 3cos² 45° + tan² 60° = 2
HOPE THIS ANSWER WILL HELP YOU…
Answered by
6
Answer :-
______________________________
To evaluate : 2 sin² 30° − 3cos² 45° + tan² 60°
Salutation :-
2 sin² 30° − 3cos² 45° + tan² 60°
= 2 × ( 1 / 2 )² - 3 × ( 1 / √2 )² + ( √3 )²
= 2 × 1 / 4 - 3 × 1 / 2 + 3
= 1 / 2 - 3 / 2 + 3
= ( 1 - 3 + 6 ) / 2
= 4 / 2
= 2
_______________________________
Since ,
sin30° = 1 / 2
cos45° = 1 / √2
tan60° = √3
_______________________________
______________________________
To evaluate : 2 sin² 30° − 3cos² 45° + tan² 60°
Salutation :-
2 sin² 30° − 3cos² 45° + tan² 60°
= 2 × ( 1 / 2 )² - 3 × ( 1 / √2 )² + ( √3 )²
= 2 × 1 / 4 - 3 × 1 / 2 + 3
= 1 / 2 - 3 / 2 + 3
= ( 1 - 3 + 6 ) / 2
= 4 / 2
= 2
_______________________________
Since ,
sin30° = 1 / 2
cos45° = 1 / √2
tan60° = √3
_______________________________
Similar questions
Social Sciences,
7 months ago
Math,
7 months ago
Computer Science,
7 months ago
Environmental Sciences,
1 year ago
Physics,
1 year ago
Science,
1 year ago