Evaluate each of the following 4(sin⁴30⁰+cos²60⁰)-3(cos²45⁰-sin²90⁰)-sin²60⁰
Answers
Answered by
9
SOLUTION :
Given :
4(sin⁴ 30° + cos² 60°) - 3(cos² 45° - sin² 90° ) - sin² 60°
= 4[(1/2)⁴ +(1/2)²] − 3[(1/√2)² −1) −(√3/2)²
[sin 30°= ½ , cos 60°= ½ , cos 45° = 1/√2, sin 90° = 1 , sin 60°= √3/2]
= 4[1/16 + ¼] - 3[½ - 1] - 3/4
= 4 [ (1 + 1×4)/16] - 3 [(1 - 1×2)/2] - ¾
[By taking L.C.M of denominator]
= 4 [ (1+ 4)/16] - 3 [(1 - 2)/2] - 3/4
= 4[5/16] - 3 [ - 1/2 ] - 3/4
= 5/4 + 3/2 - ¾
= 5/4 - ¾ + 3/2
[By rearranging the terms]
= (5 - 3)/4 + 3/2
= 2/4 + 3/2
= ½ + 3/2
= (1+3)/2
= 4 /2 = 2
4(sin⁴ 30° + cos² 60°) - 3(cos² 45° - sin² 90° ) - sin² 60° = 2
Hence, 4(sin⁴ 30° + cos² 60°) - 3(cos² 45° - sin² 90° ) - sin² 60°
HOPE THIS ANSWER WILL HELP YOU…
Answered by
15
Answer :-
________________________
4( sin⁴30⁰ + cos²60⁰ ) - 3( cos²45⁰ - sin²90⁰ ) - sin²60⁰
=> 4 { ( 1 / 2 )⁴ + ( 1 + 2 )² } - 3 { ( 1 / √2 )² - ( 1 )² } - ( √3 / 2 )²
=> 4 { 1 / 16 + 1 / 4 } - 3 { 1 / 2 - 1 } - ( 3 / 4 )
=> 4 { ( 1 + 4 ) / 16 } - 3 { ( 2 - 1 ) / 2 } - ( 3 / 4 )
=> 4 × 5 / 16 - 3 × 1 / 2 - 3 / 4
=> 5 / 4 - 3 / 2 - 3 / 4
=> ( 5 - 6 - 3 )/ 4
=> - 4 / 4
=> - 1
•°• The required Answer is - 1
________________________________
Since ,
sin30° = 1 / 2
cos60° = 1 / 2
cos45° = 1 / √2
sin90° = 1
sin60° = √3 / 2
____________________________
________________________
4( sin⁴30⁰ + cos²60⁰ ) - 3( cos²45⁰ - sin²90⁰ ) - sin²60⁰
=> 4 { ( 1 / 2 )⁴ + ( 1 + 2 )² } - 3 { ( 1 / √2 )² - ( 1 )² } - ( √3 / 2 )²
=> 4 { 1 / 16 + 1 / 4 } - 3 { 1 / 2 - 1 } - ( 3 / 4 )
=> 4 { ( 1 + 4 ) / 16 } - 3 { ( 2 - 1 ) / 2 } - ( 3 / 4 )
=> 4 × 5 / 16 - 3 × 1 / 2 - 3 / 4
=> 5 / 4 - 3 / 2 - 3 / 4
=> ( 5 - 6 - 3 )/ 4
=> - 4 / 4
=> - 1
•°• The required Answer is - 1
________________________________
Since ,
sin30° = 1 / 2
cos60° = 1 / 2
cos45° = 1 / √2
sin90° = 1
sin60° = √3 / 2
____________________________
TheHappySoul:
Good going bhai :)
Similar questions