Math, asked by tandulkarmadhura, 4 months ago

evaluate following limit​

Attachments:

Answers

Answered by Anonymous
19

To Evaluate:-

\displaystyle \lim_{y \to \ - 3} \frac{y {}^{5}  + 243}{y {}^{3} + 27 }

Solⁿ:-

\implies\displaystyle \lim_{y \to \ - 3} \frac{(y {}^{5}  + 243)/(y + 3)}  {(y {}^{3} + 27) /(y + 3)}

\implies \frac{\displaystyle \lim_{y \to \ - 3} \: \: ( \frac{y {}^{5}  - ( - 3) {}^{5} }{y - ( - 3)} )}{\displaystyle \lim_{y \to \ - 3   \:  \:\:  \frac{y {}^{3 \:  - ( - 3) {}^{3} } }{y - ( - 3)} }}

\implies \:  \frac{5 \: ( - 3) {}^{4} }{3 \: ( - 3) {}^{2} }

\implies \frac{5}{3}  \times 9 = 15

★ Formula used:-

\displaystyle \lim_{x \to a}  \frac{x {}^{n}  - a {}^{n} }{x - a }  = n.a {}^{n - 1}

Therefore answer required is 15 ( Formula sab Yaad hai na :')?


Anonymous: Noiceeeeee ! :O
Answered by BrainlyIAS
18

Question :

\dagger\ \; \displaystyle \sf \red{\lim_{y \to -3}\left[ \dfrac{y^5+243}{y^3+25}\right]}

Solution :

\displaystyle \sf \lim_{y \to -3}\left[ \dfrac{y^5+243}{y^3+25}\right]

It leads to indeterminant form  \dfrac{0}{0} , when we sub. the limits directly in the eq. . So ,

Apply L-Hopital's rule ,

\longrightarrow \displaystyle \sf \lim_{y \to -3}\left[ \dfrac{\frac{d}{dx}(y^5+243)}{\frac{d}{dx}(y^3+25)}\right]

\longrightarrow \displaystyle \sf \lim_{y \to -3}\left[ \dfrac{5y^4}{3y^2}\right]

Apply limit ,

\longrightarrow \displaystyle \sf \left[ \dfrac{5(-3)^4}{3(-3)^2}\right]

\longrightarrow\ \;  \displaystyle \sf \dfrac{5(81)}{3(9)}

\longrightarrow \displaystyle \sf\ \; \dfrac{5(9)}{3}

\longrightarrow\ \; \displaystyle \sf 5(3)

\longrightarrow \displaystyle \sf\ \;  \pink{15}

★ ═════════════════════ ★

\bullet\ \; \displaystyle \sf \purple{\lim_{y \to -3}\left[ \dfrac{y^5+243}{y^3+25}\right]=15}

Similar questions