Math, asked by jais0786tj, 1 year ago

evaluate: [i^18+(1/i)^25]^3​

Answers

Answered by ihrishi
5

Step-by-step explanation:

 \{ {i}^{18}  + ( \frac{1}{i} )^{25 }  \} ^{3}  \\  =  \{ {(i^{2}) }^{9}  +  \frac{1}{(i)^{25 }} \} ^{3}  \\ =  \{ {( - 1) }^{9}  +  \frac{1}{(i)^{24  } \times i} \} ^{3}  \\ =  \{  - 1  +  \frac{1}{(i^{2})^{12} \times i} \} ^{3}  \\  =  \{  - 1  +  \frac{1}{( - 1)^{12} \times i} \} ^{3}  \\=  \{  - 1  +  \frac{1}{1 \times i} \} ^{3}  \\ =  \{  - 1  +  \frac{1}{ i} \} ^{3}  \\=  \{\frac{ - i + 1}{ i} \} ^{3}  \\  =  \frac{(1 - i)^{3} }{ {i}^{3} }  \\  =  \frac{1 -  {i}^{3}  - 3 {(1)}^{2} \times i + 3 \times1 \times  {i}^{2}  } { {i}^{2} \times i } \\  =  \frac{1 -  {i}^{2} \times i - 3i + 3( - 1) }{ - 1 \times i}  \\  =   \frac{1 - ( - 1)i - 3i - 3}{ - i}  \\  =  \frac{1 + i - 3i - 3}{ - i}  \\  =  \frac{ - 2 - 2i}{ - i}  \\  =   \frac{ - (2 + 2i)}{ - i}  \\  =  \frac{2 + 2i}{i}  \\  =  \frac{2}{i}  +  \frac{2i}{i}  \\  =  \frac{2}{i}  + 2 \\  = 2 + 2 {i}^{ - 1}

Similar questions