evaluate i^ 67 in complex number
Answers
Answered by
1
Answer:
Answer:
i^{37}+\frac{1}{i^{67}}=2ii
37
+
i
67
1
=2i
Step-by-step explanation:
Given : Expression i^{37}+\frac{1}{i^{67}}
To find : Evaluate the expression ?
Solution :
We can write,
i^{37}+\frac{1}{i^{67}}=i^{36}\cdot i+\frac{1}{i^{66}\cdot i}i
37
+
i
67
1
=i
36
⋅i+
i
66
⋅i
1
We know that, i=\sqrt{-1}\Rightarrow i^2=-1i=
−1
⇒i
2
=−1
So, i^{36}=i^{2\cdot 18}=(-1)^{18}=1 i
36
=i
2⋅18
=(−1)
18
=1
i^{66}=i^{2\cdot 33}=(-1)^{33}=-1i
66
=i
2⋅33
=(−1)
33
=−1
Substitute back,
=i+\frac{1}{-i}=i+
−i
1
=i-\frac{1}{i}=i−
i
1
=\frac{i^2-1}{i}=
i
i
2
−1
Multiply and divide by i,
=\frac{-1-1}{i}\times \frac{i}{i}=
i
−1−1
×
i
i
=\frac{-2i}{i^2}=
i
2
−2i
=2i=2i
Therefore, i^{37}+\frac{1}{i^{67}}=2ii
37
+
i
67
1
=2i
Similar questions