Math, asked by khirwarshourya, 5 months ago

Evaluate : (i) sin (90° – A) cos A + cos (90° – A) sin A

Answers

Answered by IdyllicAurora
10

\\\;\underbrace{\underline{\sf{Understanding\;the\;Concept}}}

Here the concept of Trigonometric Identities has been used. We see that we have to evaluate the given expression. We can do it by simplifying the equation part by part. We can use Trigonometric identities to simplify this and again use it to get the final answer.

Let's do it !!

______________________________________________

Identities used :-

\\\;\boxed{\sf{\pink{\sin\:\theta\;=\;\bf{\cos\:(90^{\circ}\;-\;\theta)}}}}

\\\;\boxed{\sf{\pink{\sin^{2}\:\theta\;+\;\cos^{2}\:\theta\;=\;\bf{1}}}}

______________________________________________

Solution :-

Given expression,

sin(90° - A) cos A + cos(90° - A) sin A

We already know the identity that,

\\\;\sf{:\rightarrow\;\;\sin\:\theta\;=\;\bf{\orange{\cos\:(90^{\circ}\;-\;\theta)}}}

From this we can derive that,

\\\;\sf{:\rightarrow\;\;\cos\:\theta\;=\;\bf{\orange{\sin\:(90^{\circ}\;-\;\theta)}}}

From given expression,

\\\;\sf{\Longrightarrow\;\;\sin\:(90^{\circ}\;-\;A)\;\cos\:A\;+\;\cos\:(90^{\circ}\;-\;A)\;\sin\:A}

By applying the value of cos A, we get

\\\;\sf{\Longrightarrow\;\;\cos\:A\;\cos\:A\;+\;\cos\:(90^{\circ}\;-\;A)\;\sin\:A}

\\\;\sf{\Longrightarrow\;\;\cos\:A\:\times\:\cos\:A\;+\;\cos\:(90^{\circ}\;-\;A)\;\sin\:A}

\\\;\sf{\Longrightarrow\;\;\cos^{2}\:A\;+\;\cos\:(90^{\circ}\;-\;A)\;\sin\:A}

Now using the value of sin A, we get

\\\;\sf{\Longrightarrow\;\;\cos^{2}\:A\;+\;\sin\:A\;\sin\:A}

\\\;\sf{\Longrightarrow\;\;\cos^{2}\:A\;+\;\sin\:A\;\times\;\sin\:A}

\\\;\sf{\Longrightarrow\;\;\cos^{2}\:A\;+\;\sin^{2}\:A}

We already know that,

\\\;\sf{\orange{\sin^{2}\:\theta\;+\;\cos^{2}\:\theta\;=\;\bf{1}}}

Now applying this, we get

\\\;\sf{\Longrightarrow\;\;\cos^{2}\:A\;+\;\sin^{2}\:A}

\\\;\sf{\Longrightarrow\;\;\sin^{2}\:A\;+\;\cos^{2}\:A}

\\\;\bf{\Longrightarrow\;\;\red{1}}

Thus, 1 is the required answer.

\\\;\underline{\boxed{\tt{Required\;\:Answer\;=\;\bf{\purple{1}}}}}

______________________________________________

More to know :-

\\\;\sf{\leadsto\;\;\sec^{2}\:\theta\;=\;1\;+\;\tan^{2}\:\theta}

\\\;\sf{\leadsto\;\;cosec^{2}\:\theta\;=\;1\;+\;\cot^{2}\:\theta}

\\\;\sf{\leadsto\;\;cosec\:\theta\;=\;\sec(90^{\circ}\;-\;\theta)}

\\\;\sf{\leadsto\;\;\tan\:\theta\;=\;\cot(90^{\circ}\;-\;\theta)}


Clαrissα: Great!
ItsHelpingQueen: Daebak !
IdyllicAurora: Thanks :)
Answered by arpitasinghchauhan8
3

Answer:

see this image ⬆⬆⬆⬆⬆⬆

Step-by-step explanation:

hope it's help you

Attachments:
Similar questions