Math, asked by darshini3525, 3 months ago

Evaluate:

(i) (x - 2) (x + 2) (x² + 4)​

Answers

Answered by Truebrainlian9899
4

Solution :

 \:

Distributive Property -

 \:

  • (i) (x - 2) (x + 2) (x² + 4)

 \:

⇒ x(x + 2)(x² + 4) - 2(x + 2)(x² + 4)

 \:

  • Futher Distributing :

 \:

⇒ x[x(x² + 4) + 2(x² + 4)] - 2[x(x² + 4) + 2(x² + 4)]

 \:

⇒ x[ x³ + 4x + 2x² + 8] - 2[ x³ + 4x + 2x² + 8]

⇒ x⁴ + 4x² + 2x³ + 8x - 2x³ - 8x - 4x² - 16

 \:

  • Canceling the like terms :

 \:

 \large⇒  \rm \: x⁴ + \cancel{ 4x²} + 2x³ + 8x  \\  \large \rm- 2x³ - 8x  \:  \: \cancel{ - 4x²} - 16

 \:

 \large⇒  \rm \: x⁴  + 2x³ +  \cancel{8x } \\  \large \rm- 2x³ \cancel{ - 8x}  \:  \:- 16

 \:

 \large⇒  \rm \: x⁴  +  \cancel{2x³} \large \rm \:  \:  \:  \cancel{- 2x³} - 16

 \:

 \large \therefore \rm(i)  \: (x - 2) (x + 2) (x² + 4) \\  \\  =  \large  \:  \boxed{ \underline\mathtt{ {x}^{4} - 16 }}

 \:

_____________________________________________

 \:

Solving with Identity :

 \:

  • Identity :

 \:

➥ (a + b)(a - b) = a² - b²

 \:

(i) (x - 2) (x + 2) (x² + 4)

 \:

Here -

 \:

  • a = x

  • b = 2

 \:

⇒ (x - 2) (x + 2) (x² + 4) = (x² - 2²)(x² + 4)

⇒ (x² - 4)(x² + 4)

 \:

  • Again Using Identity :

 \:

⇒ (x² - 4)(x² + 4)

 \large \rm \:  =  \:  {x}^{ {2}^{2} }   -  {4}^{2}  \\  \\   \large \rm \: =  \:  {x}^{2 \times 2}  - 16

 \:

= x - 16

 \:

 \large \therefore \rm(i)  \: (x - 2) (x + 2) (x² + 4) \\  \\  =  \large  \:  \boxed{ \underline\mathtt{ {x}^{4} - 16 }}

Answered by XxRedmanherexX
2

(x - 2)(x + 2)(x {}^{2}  + 4) \\   = ( {x}^{2}  - 4)( {x}^{2}  + 4) \\  =  {x}^{4}  - 16

Similar questions