Math, asked by kshariharan, 3 months ago

evaluate i) ∫x²(1-x)²dx ii)∫x[sin²(sin x) + cos²(cos x)] dx

please give correct answer

Answers

Answered by suyash638
0

ii) i was unable to solve 2nd one sorry......

Attachments:
Answered by udayagrawal49
1

Answer:

(i) \tt{ \int {x^{2} (1-x)^{2}} \, dx} = \tt{ \dfrac{x^{5}}{5} - \dfrac{x^{4}}{2} + \dfrac{x^{3}}{3} + c }

(ii) \tt{ \int\limits^\pi_0 {x [sin^{2}(sinx) + cos^{2}(cosx)]} \, dx  } = \tt{ \dfrac{\pi^{2}}{2} }

Step-by-step explanation:

(i) Given: \tt{ \int {x^{2} (1-x)^{2}} \, dx}

= \tt{ \int {x^{2} (1+x^{2}-2x)} \, dx}

= \tt{ \int {(x^{2} +x^{4}-2x^{3})} \, dx}

= \tt{ \dfrac{x^{3}}{3} + \dfrac{x^{5}}{5} - 2\dfrac{x^{4}}{4} + c }

= \tt{ \dfrac{x^{5}}{5} - \dfrac{x^{4}}{2} + \dfrac{x^{3}}{3} + c }

(ii) Given: \tt{ \int\limits^\pi_0 {x [sin^{2}(sinx) + cos^{2}(cosx)]} \, dx  }

Let, I = \tt{ \int\limits^\pi_0 {x [sin^{2}(sinx) + cos^{2}(cosx)]} \, dx  }     --------[1]

⇒ I = \tt{ \int\limits^\pi_0 {(\pi -x) [sin^{2}(sin(\pi-x)) + cos^{2}(cos(\pi-x))]} \, dx  }

⇒ I = \tt{ \int\limits^\pi_0 {(\pi -x) [sin^{2}(sinx) + cos^{2}(cosx)]} \, dx  }      --------[2]

On adding equations [1] and [2], we get

2I = \tt{ \int\limits^\pi_0 {x [sin^{2}(sinx) + cos^{2}(cosx)]} \, dx } + \tt{ \int\limits^\pi_0 {(\pi -x) [sin^{2}(sinx) + cos^{2}(cosx)]} \, dx  }

⇒ 2I = \tt{ \int\limits^\pi_0 {x [sin^{2}(sinx) + cos^{2}(cosx)] + (\pi -x) [sin^{2}(sinx) + cos^{2}(cosx)]} \, dx  }

⇒ 2I = \tt{ \int\limits^\pi_0 {(x+\pi-x) [sin^{2}(sinx) + cos^{2}(cosx)] } \, dx }

⇒ 2I = \tt{ \int\limits^\pi_0 { \pi  [sin^{2}(sinx) + cos^{2}(cosx)]} \, dx  }

⇒ 2I = \tt{ 2\pi \int\limits^\frac{\pi}{2}_0 { [sin^{2}(sinx) + cos^{2}(cosx)]} \, dx  }

⇒ I = \tt{ \pi \int\limits^\frac{\pi}{2}_0 { [sin^{2}(sinx) + cos^{2}(cosx)]} \, dx  }      --------[3]

⇒ I = \tt{ \pi \int\limits^\frac{\pi}{2}_0 { [sin^{2}(sin(\dfrac{\pi}{2}-x)) + cos^{2}(cos(\dfrac{\pi}{2}-x))]} \, dx  }

⇒ I = \tt{ \pi \int\limits^\frac{\pi}{2}_0 { [sin^{2}(cosx) + cos^{2}(sinx)]} \, dx  }      --------[4]

On adding equations [3] and [4], we get

2I = \tt{ \pi \int\limits^\frac{\pi}{2}_0 { [sin^{2}(sinx) + cos^{2}(cosx)]} \, dx } + \tt{ \pi \int\limits^\frac{\pi}{2}_0 { [sin^{2}(cosx) + cos^{2}(sinx)]} \, dx }

⇒ 2I = \tt{ \pi \int\limits^\frac{\pi}{2}_0 { [sin^{2}(cosx) + cos^{2}(sinx) + sin^{2}(sinx) + cos^{2}(cosx)]} \, dx }

⇒ 2I = \tt{ \pi \int\limits^\frac{\pi}{2}_0 { 2} \, dx }

⇒ I = \tt{ \pi \int\limits^\frac{\pi}{2}_0 { 1} \, dx }

⇒ I = \tt{ \pi [\dfrac{\pi}{2} - 0 ] }

⇒ I = \tt{ \dfrac{\pi^{2}}{2} }

Formulas used :-

1) sin²θ + cos²θ = 1

2) \tt{ \int {x^{n}} \, dx = \dfrac{x^{n+1}}{n+1} }

3) \tt{ \int\limits^a_0 {f(x)} \, dx = \int\limits^a_0 {f(a-x)} \, dx }

4) \tt{ \int\limits^{2a}_{0} {f(x)} \, dx = 2 \int\limits^a_0 {f(x)} \, dx } , if f(x) is an even function.

5) \tt{ \int\limits^{2a}_{0} {f(x)} \, dx = 0} , if f(x) is an odd function.

6) \tt{ \int\limits^{a}_{0} {1} \, dx = a}

Similar questions