Math, asked by rajesh6073, 1 year ago

evaluate indefinite integral

Attachments:

Answers

Answered by Shreya1001
1
here is your answer...........
Attachments:

rajesh6073: again thanking u
Shreya1001: wlcm
Answered by anindyaadhikari13
2

 \displaystyle \int  \sf \small\frac{dx}{ \sqrt{x + 3}  +  \sqrt{x + 2} }

 \displaystyle  = \int  \sf \small\frac{1 \times ( \sqrt{x + 3}  -  \sqrt{x + 2}) }{ (\sqrt{x + 3}  +  \sqrt{x + 2}) ( \sqrt{x + 3}  -  \sqrt{x + 2} )} \: dx

 \displaystyle  = \int \sf \small \frac{ \sqrt{x + 3} +  \sqrt{x + 2}  }{x + 3 - x - 2}  \: dx

 \displaystyle  = \int \sf \small \frac{ \sqrt{x + 3} +  \sqrt{x + 2}  }{1}  \: dx

 \displaystyle  = \int \sf \small  (\sqrt{x + 3} +  \sqrt{x + 2})  \: dx

 \displaystyle  =  \small\int \sf  \sqrt{x + 3}  \: dx+   \int \sqrt{x + 2}  \: dx

Using  \sf {x}^{n} dx =  \frac{ {x}^{n + 1} }{n + 1}  + CWe get,

 \sf =  \frac{ {(x + 3)}^{1 +  \frac{1}{2} } }{1 +  \frac{1}{2} }  +  \frac{ {(x + 2)}^{1 +  \frac{1}{2} } }{1 +  \frac{1}{2} }

 \sf =  \frac{ {(x + 3)}^{ \frac{3}{2} } }{ \frac{3}{2} }  +  \frac{ {(x + 2)}^{ \frac{3}{2} } }{ \frac{3}{2} }

 \sf =  \frac{ 2{(x + 3)}^{ \frac{3}{2} } }{3}  +  \frac{ 2{(x + 2)}^{ \frac{3}{2} } }{3 }+C

This is the required answer.

Similar questions