Math, asked by benifa, 3 months ago

evaluate inegral x²logxdx​


benifa: thank u soo much

Answers

Answered by Asterinn
11

Correct Question :

Evaluate integral of x²logx dx.

Solution :

 \rm \longrightarrow  \rm \displaystyle \int \rm  {x}^{2}  \: log \: x \: dx \\  \\  \\  \rm \longrightarrow  \rm log \: x\displaystyle \int \rm  {x}^{2}  \:  \: dx \:  - \displaystyle \int  \rm \bigg(\dfrac{d(log \: x)}{dx}   \int {x}^{2} dx \bigg)dx\\  \\  \\  \rm \longrightarrow  \rm( log \: x\displaystyle \rm \:   \times  \dfrac{ {x}^{3} }{3}   \: ) \:  - \displaystyle \int  \rm  \bigg(\frac{1}{x}   \times  \dfrac{ {x}^{3} }{3}  \bigg)dx\\  \\  \\  \rm \longrightarrow  \rm\dfrac{ {x}^{3} }{3}( log \: x\displaystyle \rm \:       \: ) \:  - \displaystyle \int  \rm  \dfrac{ {x}^{2} }{3} dx\\  \\  \\  \rm \longrightarrow  \rm\dfrac{ {x}^{3} }{3}( log \: x\displaystyle \rm \:       \: ) \:  - \displaystyle  \rm  \dfrac{ {x}^{3} }{(3 \times 3)}  + c\\  \\  \\  \rm \longrightarrow  \rm\dfrac{ {x}^{3} }{3}( log \: x\displaystyle \rm \:       \: ) \:  - \displaystyle  \rm  \dfrac{ {x}^{3} }{9}  + c

Answer :

 \boxed{\rm\dfrac{ {x}^{3} }{3}( log \: x\displaystyle \rm \:       \: ) \:  - \displaystyle  \rm  \dfrac{ {x}^{3} }{9}  + c}

Additional Information :

\boxed{\boxed{\begin{minipage}{4cm}\displaystyle\circ\sf\:\int{1\:dx}=x+c\\\\\circ\sf\:\int{a\:dx}=ax+c\\\\\circ\sf\:\int{x^n\:dx}=\dfrac{x^{n+1}}{n+1}+c\\\\\circ\sf\:\int{sin\:x\:dx}=-cos\:x+c\\\\\circ\sf\:\int{cos\:x\:dx}=sin\:x+c\\\\\circ\sf\:\int{sec^2x\:dx}=tan\:x+c\\\\\circ\sf\:\int{e^x\:dx}=e^x+c\end{minipage}}}

Answered by Anonymous
12

Given Integrand,

 \displaystyle  \sf \int  {x}^{2}  log(x) dx

Integrating by parts,

 \longrightarrow \displaystyle  \sf  log(x) \int  {x}^{2}  dx -  \int \bigg \{  \dfrac{d( log(x) )}{dx}  \int  {x}^{2}dx \bigg \}dx \\  \\  \longrightarrow \displaystyle  \sf   \dfrac{1}{3} {x}^{3}  log(x) -   \dfrac{1}{3} \int  \dfrac{1}{x}  \times {x}^{3} dx \\  \\   \longrightarrow \displaystyle  \sf   \dfrac{1}{3} {x}^{3}  log(x) -   \dfrac{1}{3} \int  {x}^{2} dx \\  \\   \longrightarrow \displaystyle  \sf   \dfrac{1}{3} {x}^{3}  log(x) -   \dfrac{1}{3} \bigg \{ \dfrac{ {x}^{3} }{3}  \bigg \} + c \\  \\    \longrightarrow \displaystyle  \sf   \dfrac{1}{3} {x}^{3}  log(x) -   \dfrac{ {x}^{3} }{9}   + c

Thus,

 \boxed{ \boxed{ \displaystyle  \sf \int  {x}^{2}  log(x) dx = \dfrac{1}{3} {x}^{3}  log(x) -   \dfrac{ {x}^{3} }{9}   + c }}

Formula Used :

 \boxed{ \boxed{ \displaystyle  \sf \int uvdx = u \int vdx - \int \bigg(u' \int vdx\bigg)dx }}

Here, u and v are x dependant functions.

Similar questions