Math, asked by zameerrehan12, 1 month ago

Evaluate : 'int(3x-2)/(x^(2)-3x +2)dx'​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\displaystyle\int\sf \dfrac{3x - 2}{( {x}^{2}  - 3x + 2)}  \: dx

can be rewritten as

\rm :\longmapsto\:\displaystyle\int\sf \dfrac{3x - 2}{(x - 1)(x - 2)}  \: dx

So to evaluate this integral, we first resolve by partial fraction

\rm :\longmapsto\:Let \: \dfrac{3x - 2}{(x - 1)(x - 2)}  = \dfrac{a}{x - 1}  + \dfrac{b}{x - 2} -  -  - (1)

\rm :\longmapsto\:3x - 2 = a(x - 2) + b(x - 1) -  - (2)

On substituting x = 1 in equation (2), we get

\rm :\longmapsto\:3(1) - 2 = a(1 - 2) + b(1 - 1)

\rm :\longmapsto\:3 - 2 = a( - 1)

\bf\implies \:a =  -  \: 1 -  - (3)

On substituting x = 2, in equation (2), we get

\rm :\longmapsto\:3(2) - 2 = a(2- 2) + b(2- 1)

\rm :\longmapsto\:6 - 2 =  b(1)

\bf\implies \:b = 4 -  -  - (4)

Now,

On substituting the values of a and b, in equation (1),

\rm :\longmapsto\: \dfrac{3x - 2}{(x - 1)(x - 2)}  = \dfrac{ - 1}{x - 1}  + \dfrac{4}{x - 2}

On integrating both sides w. r. t. x, we get

\rm :\longmapsto\: \displaystyle\int\sf \dfrac{3x - 2}{(x - 1)(x - 2)}dx =\displaystyle\int\sf  \dfrac{ - 1}{x - 1}dx + \displaystyle\int\sf \dfrac{4}{x - 2}dx

\rm :\longmapsto\: \displaystyle\int\sf \dfrac{3x - 2}{(x - 1)(x - 2)}dx =  - log(x - 1) +  log(x - 2) + c

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \green{\boxed{ \because \:  \bf \: \displaystyle\int\sf\dfrac{1}{x} \: dx =   log(x)  + c}}

\bf :\longmapsto\: \displaystyle\int\bf \dfrac{3x - 2}{(x - 1)(x - 2)}dx =  log \bigg | \frac{x - 2}{x - 1}  \bigg| + c

 \:  \:  \:  \:  \:  \:  \:  \:  \: \green{\boxed{ \because \bf \: logx - logy = log \frac{x}{y} }}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf Factor \: in \: denominator & \bf Decomposition \: in \: partial \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf ax + b & \sf \displaystyle \frac{A}{{ax + b}} \\ \\ \sf  {(ax + b)}^{2}  & \sf \displaystyle \frac{{{A_1}}}{{ax + b}} + \frac{{{A_2}}}{{{{\left( {ax + b} \right)}^2}}} \\ \\ \sf  {ax}^{2} + bx + c  & \sf \displaystyle \frac{{Ax + B}}{{a{x^2} + bx + c}} \end{array}} \\ \end{gathered}

Similar questions