evaluate:-
int dx/ (x+2)(x^ 2 +1) = integrate 1/(x ^ 2 + 1) dx = arctan(x) + c
Answers
Given integral is
Using Partial Fraction, Let assume that
On taking LCM, we get
On substituting x = - 2, we get
Now, from equation (2), we have
On comparing the coefficient of x^2, we have
Now, On comparing the constant term, we get
So, equation (1) can be rewritten as
On substituting the values of A, B and C, we get
On integrating both sides, we get
Formulae Used :-
Additional Information :-
Answer:
\large\underline{\sf{Solution-}}
Solution−
Given integral is
\begin{gathered}\rm \: \displaystyle\int\rm \frac{1}{(x + 2)( {x}^{2} + 1)} dx \\ \end{gathered}
∫
(x+2)(x
2
+1)
1
dx
Using Partial Fraction, Let assume that
\begin{gathered}\rm \: \dfrac{1}{(x + 2)( {x}^{2} + 1)} = \dfrac{A}{x + 2} + \dfrac{Bx + C}{ {x}^{2} + 1} \cdots(1) \\ \end{gathered}
(x+2)(x
2
+1)
1
=
x+2
A
+
x
2
+1
Bx+C
⋯(1)
On taking LCM, we get
\begin{gathered}\rm \: 1 = A( {x}^{2} + 1) + (Bx + C)(x + 2) \cdots \cdots(2)\\ \end{gathered}
1=A(x
2
+1)+(Bx+C)(x+2)⋯⋯(2)
On substituting x = - 2, we get
\begin{gathered}\rm \: 1 = A( {( - 2)}^{2} + 1) + 0\\ \end{gathered}
1=A((−2)
2
+1)+0
\begin{gathered}\rm \: 1 = A( 4+ 1)\\ \end{gathered}
1=A(4+1)
\begin{gathered}\rm\implies \:\boxed{ \rm{ \:A = \frac{1}{5} \: }} \\ \end{gathered}
⟹
A=
5
1
Now, from equation (2), we have
\begin{gathered}\rm \: 1 = A{x}^{2} + A + {Bx}^{2} + Cx + 2Bx + 2C \\ \end{gathered}
1=Ax
2
+A+Bx
2
+Cx+2Bx+2C
\begin{gathered}\rm \: 1 = (A + B){x}^{2} + (C + 2B)x + (A + 2C) \\ \end{gathered}
1=(A+B)x
2
+(C+2B)x+(A+2C)
On comparing the coefficient of x^2, we have
\begin{gathered}\rm \: A + B = 0 \\ \end{gathered}
A+B=0
\begin{gathered}\rm \: B = - A \\ \end{gathered}
B=−A
\begin{gathered}\rm\implies \:\boxed{ \rm{ \:B = - \frac{1}{5} \: }} \\ \end{gathered}
⟹
B=−
5
1
Now, On comparing the constant term, we get
\begin{gathered}\rm \: A + 2C = 1 \\ \end{gathered}
A+2C=1
\begin{gathered}\rm \: \frac{1}{5} + 2C = 1 \\ \end{gathered}
5
1
+2C=1
\begin{gathered}\rm \: 2C = 1 - \frac{1}{5} \\ \end{gathered}
2C=1−
5
1
\begin{gathered}\rm \: 2C = \frac{4}{5} \\ \end{gathered}
2C=
5
4
\begin{gathered}\rm\implies \:\boxed{ \rm{ \:C = \frac{2}{5} \: }} \\ \end{gathered}
⟹
C=
5
2
So, equation (1) can be rewritten as
\begin{gathered}\rm \: \dfrac{1}{(x + 2)( {x}^{2} + 1)} = \dfrac{A}{x + 2} + \dfrac{Bx}{ {x}^{2} + 1} + \frac{C}{ {x}^{2} + 1} \\ \end{gathered}
(x+2)(x
2
+1)
1
=
x+2
A
+
x
2
+1
Bx
+
x
2
+1
C
On substituting the values of A, B and C, we get
\begin{gathered}\rm \: \dfrac{1}{(x + 2)( {x}^{2} + 1)} = \dfrac{ \dfrac{1}{5} }{x + 2} + \dfrac{ - \dfrac{1}{5} x}{ {x}^{2} + 1} + \frac{ \dfrac{2}{5} }{ {x}^{2} + 1} \\ \end{gathered}
(x+2)(x
2
+1)
1
=
x+2
5
1
+
x
2
+1
−
5
1
x
+
x
2
+1
5
2
On integrating both sides, we get
\begin{gathered}\rm \:\displaystyle\int\rm \dfrac{dx}{(x + 2)( {x}^{2} + 1)} = \frac{1}{5}\displaystyle\int\rm \dfrac{dx}{x + 2} - \frac{1}{5}\displaystyle\int\rm \dfrac{xdx}{ {x}^{2} + 1} + \frac{2}{5}\displaystyle\int\rm \frac{dx}{ {x}^{2} + 1} \\ \end{gathered}
∫
(x+2)(x
2
+1)
dx
=
5
1
∫
x+2
dx
−
5
1
∫
x
2
+1
xdx
+
5
2
∫
x
2
+1
dx
\begin{gathered}\rm \:\displaystyle\int\rm \dfrac{dx}{(x + 2)( {x}^{2} + 1)} = \frac{1}{5}log |x + 2|-\frac{1}{10}\displaystyle\int\rm \dfrac{2xdx}{ {x}^{2} + 1} +\frac{2}{5} {tan}^{ - 1}x \\ \end{gathered}
∫
(x+2)(x
2
+1)
dx
=
5
1
log∣x+2∣−
10
1
∫
x
2
+1
2xdx
+
5
2
tan
−1
x
\begin{gathered}\displaystyle\int\rm\dfrac{dx}{(x + 2)({x}^{2} + 1)}= \frac{1}{5}log |x + 2|-\frac{1}{10}log | {x}^{2}+ 1|+\frac{2}{5} {tan}^{ - 1}x+c\\ \end{gathered}
∫
(x+2)(x
2
+1)
dx
=
5
1
log∣x+2∣−
10
1
log∣x
2
+1∣+
5
2
tan
−1
x+c
\rule{190pt}{2pt}
Formulae Used :-
\begin{gathered}\boxed{ \rm{ \:\displaystyle\int\rm \frac{dx}{x} \: = \: log |x| + c \: }} \\ \end{gathered}
∫
x
dx
=log∣x∣+c
\begin{gathered}\boxed{ \rm{ \:\displaystyle\int\rm \frac{f'(x)}{f(x)}dx \: = \: log |f(x)| + c \: }} \\ \end{gathered}
∫
f(x)
f
′
(x)
dx=log∣f(x)∣+c
\rule{190pt}{2pt}
Additional Information :-
\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf Fraction & \bf Partial \: Fraction \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf \dfrac{1}{(ax + b)(cx + d)} & \sf \dfrac{p}{ax + b} + \dfrac{q}{cx + d} \\ \\ \sf \dfrac{1}{ {(ax + b)}^{2} } & \sf \dfrac{p}{ax + b} + \dfrac{q}{ {(ax + b)}^{2} } \\ \\ \sf \dfrac{1}{(ax + b)(c {x}^{2} + d)} & \sf \dfrac{p}{ax + b} + \dfrac{qx + r}{c {x}^{2} + d} \end{array}} \\ \end{gathered}\end{gathered}
Fraction
(ax+b)(cx+d)
1
(ax+b)
2
1
(ax+b)(cx
2
+d)
1
Partial Fraction
ax+b
p
+
cx+d
q
ax+b
p
+
(ax+b)
2
q
ax+b
p
+
cx
2
+d
qx+r