Physics, asked by GoldenGirl853, 1 month ago


Evaluate int (e^x+x^e) dx from 1 to 0
I'll mark your answer brainliest, please answer fast​

Answers

Answered by allysia
42

Answer:

\\\tt 1 - e - \dfrac{1}{e+1}

Explanation:

\\\tt \int _1 ^0  (e^x + x^e) dx \\ \\\tt =   \int _1 ^0 e^x dx + \int _1 ^0 x^edx \\ \\\tt = [e^x]_1^0 +  [\dfrac{x^{e+1}}{e+1} ]_1^0 \\ \\\tt  =  (1-e )  + (\dfrac{0^{(e+1)}}{e+1}  - \dfrac{1^{(e+1)}}{e+1} )\\ \\\tt = 1 - e - \dfrac{1}{e+1}

Formulas used:

\\\tt \int_a^b e^x dx =  [e^x]_a^b = e^b -e^a\\ \\\\\tt  \int_a^b x^y dx = [\dfrac{x^{y+1}}{y+1} ]_a^b =  (\dfrac{b^{y+1}}{y+1} )-  (\dfrac{a^{y+1}}{y+1} )

Answered by Anonymous
46

⠀⌬⠀ Evaluate :

\qquad \qquad \bigstar \:\:\sf  \int_1^0 \:\big( \:e^x \: + \:x^e\: \big)\:dx\: \\\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀

\qquad \dashrightarrow \sf   \int_1^0 \:\big( \:e^x \: + \:x^e\: \big)\:dx\:\:\:\\\\

\qquad \qquad \bigstar \:\:\underline{\purple {\pmb{\sf \:\: By \:\:Evaluating\:the\:Given \:\: ,\:we\:get\:;}}}\\\\

\qquad \dashrightarrow \sf   \int_1^0 \:\big( \:e^x \: + \:x^e\: \big)\:dx\:\:\:\\\\\\\qquad \dashrightarrow \sf   \int_1^0 \:\big( \:e^x \: + \:x^e\: \big)\:dx\:\:\:\\\\ \\ \qquad \dashrightarrow \sf   \int_1^0 \: \:e^x \:dx\: +  \: \int_1^0\:x^e\:\:dx\:\:\:\\\\\\\qquad \dashrightarrow \sf   \: \:\big\{\:e^x\big\}^0_1 \:\: +  \: \Bigg[ \dfrac{x^{e+ 1 }}{e + 1 }\:\Bigg]_1^0 \:\:\:\:\\\\\\\qquad \dashrightarrow \sf   \: \:\big\{\:e^0 \:-\:e^1\big\} \:\: +  \: \Bigg[ \dfrac{x^{e+ 1 }}{e + 1 }\:\Bigg]_1^0 \:\:\:\:\\\\ \\ \qquad \dashrightarrow \sf   \: \:\big\{\:1 \:-\:e\big\} \:\: +  \: \Bigg[ \dfrac{x^{e+ 1 }}{e + 1 }\:\Bigg]_1^0 \:\:\:\:\\\\\\\qquad \dashrightarrow \sf   \: \:\big\{\:1 \:-\:e\big\} \:\: +  \: \Bigg[ \dfrac{0^{e+ 1 }}{e + 1 }\:-\:\dfrac{1^{e+ 1 }}{e + 1 }\:\Bigg] \:\:\:\:\\\\ \\ \qquad \dashrightarrow \sf   \: \:\big\{\:1 \:-\:e\big\} \:\: +  \: \Bigg[ \dfrac{0^{e+ 1 }}{e + 1 }\:-\:\dfrac{e+ 1 }{e + 1 }\:\Bigg] \:\:\:\:\\\\ \\ \qquad \dashrightarrow \sf   \: \:\big\{\:1 \:-\:e\big\} \:\: +  \: \Bigg[ \dfrac{0^{e+ 1 }}{e + 1 }\:-\:\cancel {\:\dfrac{e+ 1 }{e + 1 }}\:\Bigg] \:\:\:\:\\\\ \\ \qquad \dashrightarrow \sf   \: \:\big\{\:1 \:-\:e\big\} \:\: +  \: \Bigg[ \:\dfrac{0^{e+ 1 }}{e + 1 }\:\Bigg] \:\:\:\:\\\\ \\ \qquad \dashrightarrow \sf   \: \:\big\{\:1 \:-\:e\big\} \:\: +  \: \Bigg[ \:\dfrac{1}{e + 1 }\:\Bigg] \:\:\:\:\\\\ \\ \qquad \dashrightarrow \sf   \: \:\:1 \:-\:e \:\: +  \:\dfrac{1}{e + 1 } \:\:\:\:\\\\ \\ \qquad \dashrightarrow\underline {\boxed {\pmb{ \frak{\purple {  \: \:\:1 \:-\:e \:\: +  \:\dfrac{1}{e + 1 } \:}}}}}\:\:\:\\\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\qquad \qquad \underline {\bigstar\:\:\pmb{\mathbb{ ADDITIONAL \:\:INFORMATION \::\:}}}\:\\\\

\dag \:\:\underline { \underline {\purple{\sf Integrals \:\:-\: }}}\\\\

\qquad \qquad \boxed{\boxed{\begin{array}{cc}\displaystyle\circ\sf\:\int{1\:dx}=x+c\\\\\circ\sf\:\int{a\:dx}=ax+c\\\\\circ\sf\:\int{x^n\:dx}=\dfrac{x^{n+1}}{n+1}+c\\\\\circ\sf\:\int{sin\:x\:dx}=-cos\:x+c\\\\\circ\sf\:\int{cos\:x\:dx}=sin\:x+c\\\\\circ\sf\:\int{sec^2x\:dx}=tan\:x+c\\\\\circ\sf\:\int{e^x\:dx}=e^x+c\end{array}}}

Similar questions