Math, asked by suryakantapuhan36, 2 days ago

Evaluate int int x int(5-2x-y)dx dy
where A is given by y = 0, x + 2y = 3, x = y ^ 2

Answers

Answered by Anonymous
15

Topic:

Integration

Solution:
We need to evaluate the following integral.

\displaystyle\rm I  =\iint\limits_A (5 - 2x - y) \ dx\  dy

\mathrm{where\ A\ is\ given\ by\ y = 0, x + 2y = 3\ and\ x =y^2.}

  • First of all plot the graphs for given equations and find the limits for the integral as the region A is given by provided equations.

Interpreting region A, we get the following limits:
{\displaystyle\rm I  =\int_0^1\int_{y^2}^{3 - 2y} (5 - 2x - y) \ dx\  dy}

Solving the inner integral, w.r.t. x keeping y's as constant.

{\displaystyle\rm I  =\int_0^1 (5x - x^2 - yx) \bigg|^{3-2y}_{y^2}\  dy}

{\displaystyle\rm I  =\int_0^1 \Big(5(3-2y) - (3-2y)^2 - y(3-2y)\Big) - \Big(5(y^2) - (y^2)^2 - y(y^2)\Big)   dy}

{\displaystyle\rm I  =\int_0^115 - 10y-  (9 + 4y^2 - 12y)- 3y +2y^2 - 5y^2 + y^4 + y^3\   dy}

{\displaystyle\rm I  =\int_0^115 - 10y-  9 - 4y^2 + 12y- 3y +2y^2 - 5y^2 + y^4 + y^3\   dy}

{\displaystyle\rm I  =\int_0^1(y^4 + y^3 - 7 y^2 - y + 6)\ dy}

Solving the integral w.r.t. y

{\displaystyle\rm I  =\dfrac{y^5}{5} + \dfrac{y^4}{4} - \dfrac{7y^3}{3} - \dfrac{y^2}{2} + 6y\bigg|^1_0}

{\displaystyle\rm I  =\dfrac{1^5}{5} + \dfrac{1^4}{4} - \dfrac{7(1)^3}{3} - \dfrac{(1)^2}{2} + 6(1)}

{\displaystyle\rm I  =\dfrac{1}{5} + \dfrac{1}{4} - \dfrac{7}{3} - \dfrac{1}{2} + 6}

{\displaystyle\rm I  =\dfrac{217}{60}}

{\displaystyle\rm I  \approx 3.616667}

So the required answer is,

\blue{\underline{\boxed{\sf\iint_A\ \  (5 - 2x - y) \ dx\  dy = \dfrac{217}{60}}}}

Attachments:
Similar questions