Math, asked by ishitagupta9010, 2 months ago

Evaluate: `int(sec^(3)x-sec x)/(cosec x-cosec^(3)x)dx​

Attachments:

Answers

Answered by shadowsabers03
17

First take \displaystyle\sf {\sec x} and \displaystyle\sf {\csc x} common from numerator and denominator respectively. Then we apply,

  • \displaystyle\sf {\dfrac{\sec x}{\csc x}=\tan x}
  • \displaystyle\sf {\sec^2x-\tan^2x=1}
  • \displaystyle\sf {\csc^2x-\cot^2x=1}

Now the integrand becomes,

\displaystyle\sf {\longrightarrow\tan x\cdot\dfrac{\tan^2x}{\cot^2x}=\tan^5x.}

This integrand is written in terms of \displaystyle\sf {\sec x} with its derivative \displaystyle\sf {\sec x\tan x} in the next step. Thus,

\displaystyle\sf{\longrightarrow \tan^5x=(\tan^2x)^2\cdot\tan x}

\displaystyle\sf{\longrightarrow \tan^5x=\dfrac{(\sec^2x-1)^2\sec x\tan x}{\sec x}}

Now put,

\displaystyle\sf{\longrightarrow u=\sec x}

\displaystyle\sf{\longrightarrow du=\sec x\tan x}

Now we are integrating \displaystyle\sf {\dfrac{(u^2-1)^2}{u}} wrt \displaystyle\sf {u.}

Expanding numerator and simplifying, we get \displaystyle\sf {u^3-2u+\dfrac{1}{u}} and on integrating each term, followed by undoing the substitution \displaystyle\sf {u=\sec x,} the final answer becomes,

\displaystyle\sf {\longrightarrow\underline {\underline {I=-\left[\dfrac {1}{4}\sec^4x-\sec^2x-\log|\cos x|\right]+C}}}

Attachments:

amansharma264: Great
Similar questions