evaluate int. x log dx
Answers
Appropriate Question :- Evaluate
Given integral is
By using, Integration by Parts, we have
Hence,
Basic Concept Used :-
Integration by Parts
Where,
- u is the function u(x)
- v is the function v(x)
- u' is the derivative of the function u(x)
The function u and v are chosen according to the word ILATE
where,
- I - Inverse trigonometric functions
- L - Logarithmic functions
- A - Algebraic functions
- T - Trigonometric functions
- E- Exponential functions
The alphabet which comes first is taken as u and other as v.
Additional information :-
Step-by-step explanation:
Appropriate Question :- Evaluate
\begin{gathered}\rm \: \displaystyle\int\rm x \: logx \: dx \\ \end{gathered}
∫xlogxdx
\red{\large\underline{\sf{Solution-}}}
Solution−
Given integral is
\begin{gathered}\rm \: \displaystyle\int\rm x \: logx \: dx \\ \end{gathered}
∫xlogxdx
By using, Integration by Parts, we have
\rm \: = \: logx\displaystyle\int\rm x \: dx \: - \: \displaystyle\int\rm \bigg[\dfrac{d}{dx}logx\displaystyle\int\rm x \: dx \bigg]dx=logx∫xdx−∫[
dx
d
logx∫xdx]dx
\rm \: = \: logx \times \dfrac{ {x}^{2} }{2} - \displaystyle\int\rm \dfrac{1}{x} \times \frac{ {x}^{2} }{2} \: dx=logx×
2
x
2
−∫
x
1
×
2
x
2
dx
\rm \: = \: \dfrac{ {x}^{2} logx}{2} - \dfrac{1}{2}\displaystyle\int\rm x \: dx=
2
x
2
logx
−
2
1
∫xdx
\begin{gathered}\rm \: = \: \dfrac{ {x}^{2} logx}{2} - \dfrac{1}{2} \times \dfrac{ {x}^{2} }{2} + c \\ \end{gathered}
=
2
x
2
logx
−
2
1
×
2
x
2
+c
\begin{gathered}\rm \: = \: \dfrac{ {x}^{2} logx}{2} - \dfrac{ {x}^{2} }{4} + c \\ \end{gathered}
=
2
x
2
logx
−
4
x
2
+c
Hence,
\begin{gathered}\rm\implies \:\boxed{ \rm{ \: \displaystyle\int\rm x \: logx \: dx = \: \dfrac{ {x}^{2} logx}{2} - \dfrac{ {x}^{2} }{4} + c \: }} \\ \end{gathered}
⟹
∫xlogxdx=
2
x
2
logx
−
4
x
2
+c
\rule{190pt}{2pt}
Basic Concept Used :-
Integration by Parts
\begin{gathered}\boxed{ \rm{ \:\displaystyle\int\rm (u.v)dx = u\displaystyle\int\rm v \: dx - \displaystyle\int\rm \bigg[\dfrac{d}{dx}u\displaystyle\int\rm vdx \bigg]dx \: }} \\ \end{gathered}
∫(u.v)dx=u∫vdx−∫[
dx
d
u∫vdx]dx
Where,
u is the function u(x)
v is the function v(x)
u' is the derivative of the function u(x)
The function u and v are chosen according to the word ILATE
where,
I - Inverse trigonometric functions
L - Logarithmic functions
A - Algebraic functions
T - Trigonometric functions
E- Exponential functions
The alphabet which comes first is taken as u and other as v.
\rule{190pt}{2pt}
Additional information :-
\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}\end{gathered}
f(x)
k
sinx
cosx
sec
2
x
cosec
2
x
secxtanx
cosecxcotx
tanx
x
1
e
x
∫f(x)dx
kx+c
−cosx+c
sinx+c
tanx+c
−cotx+c
secx+c
−cosecx+c
logsecx+c
logx+c
e
x
+c