Math, asked by vanithageeth1976, 2 days ago

evaluate integral 0 to 1
( {x}^{2}  + a)dx

Answers

Answered by sohenderpanghal
1

Step-by-step explanation:

Given I=∫

x

2

−a

2

1

dx

x=asecθ,dx=asecθtanθdθ

x

2

−a

2

=atanθ

I=∫

atanθ

asecθtanθdθ

I=∫tanθdθ=ln∣secθ∣+c

I=∫

atanθ

asecθtanθdθ

I=∫secθdθ=ln∣secθ+tanθ∣+c

I=ln(

a

x

+

(

a

x

)

2

−1

)+c

I

1

=∫

x

2

+6x−7

dx

=∫

(x+3)

2

−4

2

dx

x=x+3,a=4

I=ln

4

x+3

+

(

4

x+3

)

2

−1

+c

Similar questions