evaluate integral 0 to 1
Answers
Answered by
1
Step-by-step explanation:
Given I=∫
x
2
−a
2
1
dx
x=asecθ,dx=asecθtanθdθ
x
2
−a
2
=atanθ
I=∫
atanθ
asecθtanθdθ
I=∫tanθdθ=ln∣secθ∣+c
I=∫
atanθ
asecθtanθdθ
I=∫secθdθ=ln∣secθ+tanθ∣+c
I=ln(
a
x
+
(
a
x
)
2
−1
)+c
I
1
=∫
x
2
+6x−7
dx
=∫
(x+3)
2
−4
2
dx
x=x+3,a=4
I=ln
⎝
⎛
4
x+3
+
(
4
x+3
)
2
−1
⎠
⎞
+c
Similar questions
Math,
1 day ago
Math,
2 days ago
Social Sciences,
8 months ago
Math,
8 months ago
English,
8 months ago