Math, asked by reddyjhansi940, 3 months ago

evaluate integral 0 to π sin^8x.cos^4 xdx​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

\rm \longrightarrow \: I = \displaystyle \int_{0}^{\pi} \rm \:  {sin}^{8}x \:  {cos}^{4}x \: dx

\rm :\longmapsto\:Let \: f(x) =  {sin}^{8}x \:  {cos}^{4}x

Thus,

\rm :\longmapsto\: \: f(\pi - x) =  {sin}^{8}(\pi - x) \:  {cos}^{4}(\pi - x)

\rm :\longmapsto\: \: f(\pi - x) =  {sin}^{8}x \:  {cos}^{4}x

\bf\implies \:f(\pi - x) = f(x)

We know that,

\begin{gathered}\begin{gathered}\bf\: \rm \longrightarrow \:\displaystyle \int_{0}^{a} \rm \: f(x) \: dx \:  = \begin{cases} &\sf{ \displaystyle2\int_{0}^{\dfrac{a}{2} } \rm \: f(x) \: dx \:  \: when \: f(a - x) = f(x)} \\ &\sf{0 \:  \: when \: f(a - x) =  -  \: f(x)} \end{cases}\end{gathered}\end{gathered}

So,

Given integral can be reduced to

\rm \longrightarrow \: I = 2\displaystyle \int_{0}^{ \dfrac{\pi}{2} } \rm \:  {sin}^{8}x \:  {cos}^{4}x \: dx

So, By using Walli's Formula,

\rm \:  =  \:  \: 2 \times \dfrac{(7.5.3.1)(3.1)}{12.10.8.6.4.2} \times \dfrac{\pi}{2}

\rm \:  =  \:  \: \dfrac{7}{4.2.8.2.4.2} \times \pi

\rm \:  =  \:  \: \dfrac{7\pi}{1024}

Additional Information :-

Walli's Formula

1. If n is even natural number

 \displaystyle\int_{0}^{\dfrac{\pi}{2} } \rm \:  {sin}^{n}x dx = \dfrac{(n - 1)(n - 3) -  -  - 1}{n(n - 2) -  -  - 2} \times \dfrac{\pi}{2}

2. If n is even natural number

 \displaystyle\int_{0}^{\dfrac{\pi}{2} } \rm \:  {cos}^{n}x dx = \dfrac{(n - 1)(n - 3) -  -  - 1}{n(n - 2) -  -  - 2} \times \dfrac{\pi}{2}

3. If n is odd natural number

 \displaystyle\int_{0}^{\dfrac{\pi}{2} } \rm \:  {sin}^{n}x dx = \dfrac{(n - 1)(n - 3) -  -  - 2}{n(n - 2) -  -  - 1}

4. If n is odd natural number

 \displaystyle\int_{0}^{\dfrac{\pi}{2} } \rm \:  {cos}^{n}x dx = \dfrac{(n - 1)(n - 3) -  -  - 2}{n(n - 2) -  -  - 1}

5. If m and n both are even natural number

 \displaystyle\int_{0}^{\dfrac{\pi}{2} } \rm {sin}^{n}x {cos}^{m}x dx = \dfrac{ \{(n - 1)(n - 3) -  -  - 1 \} \{(m - 1)(m - 3) -  - 1}{(m + n)((m + n - 2) -  -  - 2} \times \dfrac{\pi}{2}

6. If m or n is odd natural number

 \displaystyle\int_{0}^{\dfrac{\pi}{2} } \rm {sin}^{n}x {cos}^{m}x dx = \dfrac{ \{(n - 1)(n - 3) -  -  - 2or1 \} \{(m - 1)(m - 3) -  - 2or1}{(m + n)((m + n - 2) -  -  - 2or1}

Similar questions