Math, asked by amnair468, 2 months ago

evaluate integral dx/1+3x^2​

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

 \int \frac{dx}{1 + 3 {x}^{2} } \\

Let  \: x =  \frac{1}{ \sqrt{3} }  \tan( \alpha )  \\  \implies dx =  \frac{1}{ \sqrt{3} }  \sec^{2} ( \alpha ) d \alpha

   = \int\frac{ \frac{1}{ \sqrt{3} } \sec^{2} ( \alpha )  }{1 +  3. \frac{1}{3} \tan^{2} ( \alpha ) } d \alpha  \\

    =   \frac{1}{ \sqrt{3} } \int\frac{  \sec^{2} ( \alpha )  }{1 +   \tan^{2} ( \alpha ) } d \alpha  \\

    =   \frac{1}{ \sqrt{3} } \int\frac{  \sec^{2} ( \alpha )  }{   \sec^{2} ( \alpha ) } d \alpha  \\

    =   \frac{1}{ \sqrt{3} } \int d \alpha  \\

    =   \frac{1}{ \sqrt{3} } \   \alpha  + c \\

    =   \frac{1}{ \sqrt{3} }  \tan ^{ - 1} ( \sqrt{3}x )   + c \\

Similar questions