Math, asked by mroyalyaswanthsai, 4 months ago

Evaluate : Integral dx
/4+5sinx

Answers

Answered by gsingh5be19
0

Step-by-step explanation:

this is the way to solve this

Attachments:
Answered by mathdude500
4

\rm :\longmapsto\:\rm \displaystyle \int\dfrac{dx}{4 + 5sinx}  -  -  - (1)

We know,

\rm :\longmapsto\: \boxed{ \bf{ \: sinx = \dfrac{2tan\dfrac{x}{2} }{1 +  {tan}^{2}\dfrac{x}{2} } }}

  • So, equation (1) reduces to

\rm :\longmapsto\:\rm \displaystyle \int \sf \: \dfrac{dx}{4 + 5 \times \dfrac{2tan\dfrac{x}{2}}{1 +  {tan}^{2}\dfrac{x}{2} } }

\rm :\longmapsto\:\rm \displaystyle \int \sf \: \dfrac{dx}{4 +  \dfrac{10tan\dfrac{x}{2}}{1 +  {tan}^{2}\dfrac{x}{2} } }

 = \rm \displaystyle \int \:  \sf \: \dfrac{1 +  {tan}^{2} \dfrac{x}{2}}{4 + 4 {tan}^{2}\dfrac{x}{2} + 10tan\dfrac{x}{2} } dx

 = \rm \displaystyle \int \:  \sf \: \dfrac{{sec}^{2} \dfrac{x}{2}}{4 + 4 {tan}^{2}\dfrac{x}{2} + 10tan\dfrac{x}{2} } dx

As we know that,

  • By using substitution method, we get.

\rm :\longmapsto\:Put \: tan\dfrac{x}{2} = y

  • Differentiate w.r.t x, we get.

\rm :\longmapsto\: {sec}^{2} \dfrac{x}{2} \times \dfrac{1}{2}  = \dfrac{dy}{dx}

\rm :\longmapsto\: {sec}^{2}\dfrac{x}{2}dx = 2dy

On substituting all these values in above integral, we get

 = \rm \displaystyle \int \:  \sf \: \dfrac{2dy}{4 {y}^{2}  + 10y + 4}

 = \rm \displaystyle \int \:  \sf \: \dfrac{dy}{ {2y}^{2}  + 5y + 2}

 = \rm \displaystyle \dfrac{1}{2} \int \:  \sf \: \dfrac{dy}{ {y}^{2} + \dfrac{5}{2} y + 1 }

 = \rm \displaystyle \dfrac{1}{2} \int \:  \sf \: \dfrac{dy}{ {y}^{2} + \dfrac{5}{2} y +  \dfrac{25}{16} - \dfrac{25}{16}  + 1 }

 = \rm \displaystyle \dfrac{1}{2} \int \:  \sf \: \dfrac{dy}{ {\bigg(y + \dfrac{5}{4}  \bigg) }^{2} - \dfrac{9}{16}  }

 = \rm \displaystyle \dfrac{1}{2} \int \:  \sf \: \dfrac{dy}{ {\bigg(y + \dfrac{5}{4}  \bigg) }^{2} -  {\bigg( \dfrac{3}{4} \bigg) }^{2}   }

 =  \sf \: \dfrac{1}{2}  \times \dfrac{1}{2}  \times \dfrac{4}{3} log\bigg(\dfrac{y + \dfrac{5}{4}  - \dfrac{3}{4} }{y + \dfrac{5}{4}  + \dfrac{3}{4} }  \bigg)  + c

  \:  \: \boxed{ \bf{ \because \:  \: \rm \displaystyle \int \:  \sf \: \dfrac{dx}{ {x}^{2}  -  {a}^{2} }  = \dfrac{1}{2a} log\bigg(\dfrac{x - a}{x + a}  \bigg)  + c}}

 =  \sf \: \dfrac{1}{3}  \: log\bigg( \dfrac{y + \dfrac{1}{2} }{y + 2} \bigg)  + c

 =  \sf \: \dfrac{1}{3}  \: log\bigg(\dfrac{2y + 1}{2(y + 2)}  \bigg)  + c

 =  \sf \: \dfrac{1}{3}  \: log\bigg(\dfrac{2y + 1}{(y + 2)}  \bigg)  + \dfrac{1}{3} log\dfrac{1}{2}  + c

 \sf \:  =  \sf \: \dfrac{1}{3}  \: log\bigg(\dfrac{2y + 1}{y + 2}  \bigg)  + d

 \sf \:  =  \sf \: \dfrac{1}{3}  \: log\bigg(\dfrac{2tan\dfrac{x}{2} + 1}{tan\dfrac{x}{2} + 2}  \bigg)  + d

  \:  \:  \:  \:  \:  \: \boxed{ \bf{ \: on \: substituting \: the \: value \: of \:y =  tan\dfrac{x}{2}}}

More information :-

 \boxed{ \bf{ \:\rm \displaystyle \int \:  \sf \: \dfrac{dx}{ {x}^{2}  +  {a}^{2} }  = \dfrac{1}{a}  {tan}^{ - 1} \dfrac{x}{a}  + c}}

 \boxed{ \bf{ \:\rm \displaystyle \int \:  \sf \: \dfrac{dx}{ \sqrt{ {a}^{2}  -  {x}^{2} } }  =  {sin}^{ - 1} \dfrac{x}{a} + c }}

Similar questions