Math, asked by jaseem4431, 1 year ago

Evaluate integral from 0 to pi/4 2tan^3x dx

Answers

Answered by lumbi
12
hope it helps u
concept:definite integration
sub tobic:trigonometry,differentiation ,basic integration
method used:substituiton method
Attachments:
Answered by VineetaGara
4

The Answer is 1- log2.

1) \int\limits^\frac{\pi}{4} _0 {2 tan^3 x} \, dx

2) 2\int\limits^\frac{\pi}{4} _b {tan^2 x  * tan x} \, dx

3) 2\int\limits^\frac{\pi}{4} _0 {(sec^2 x -1)* tan x} \, dx

4) Put  sec x = u

5) du/dx = sec x * tan x, dx = du/(sec x* tan x)

6) Substituting the values :   2\int\limits^\frac{\pi}{4} _0 {(u^2 - 1)* tan x} \, du/(u * tan x)

7) SImplifying 2\int\limits^\frac{\pi}{4} _0 {(u^2-1)/u} \, du

8) 2\int\limits^\frac{\pi}{4} _0 {u - \frac{1}{u}  } \, du

9) 2\int\limits^\frac{\pi}{4} _0 {u } \, du - 2\int\limits^\frac{\pi}{4} _0 {\frac{1}{u} } \, du

10) 2\left[\begin{array}{ccc}\frac{u^2}{2} \end{array}\right]  - 2\left[\begin{array}{ccc}\log u \end{array}\right]  with limits pi/ 4 to 0

11) u^{2} - 2 log u with limits pi/4 to 0

12) Substituting back : sec^2 x  - 2 log (sec x) with limits pi/4 to 0

13) Resolving the limits: sec ^2 (\pi /4) - 2 log (sec (\pi /4)) - sec ^2 (0) - 2 log (sec (0))

14) (\sqrt{2})^2 - 2 log(\sqrt{2}) - (1)^2 - 2 log(1)

15) 2- \frac{2}{2} log 2 - 1 - 2*0

16) Hence, the answer is 1- log 2

Similar questions