Physics, asked by vllblavanyasaini0409, 7 months ago

evaluate integral of 4y/✓(2y²+1).dy​

Answers

Answered by Asterinn
6

 \implies \:  \displaystyle \int  \bf \frac{4y}{2 {y}^{2} + 1 } dy

\implies \:  \displaystyle \int  \bf \frac{4y \: \:  dy}{2 {y}^{2} + 1 }

Now we will integrate the above expression by using substitution method.

 \bf \: let \:  \: {2 {y}^{2} + 1 }  = t

Differentiating both sides :-

 \bf {4 {y} \: dy }  = dt

\implies \:  \displaystyle \int  \bf \frac{dt}{t }

We know that :-

\underline{\boxed{\bf{  \displaystyle\int \:  \frac{1}{x}  \: dx =  log(x)  + c}}}

Therefore :-

\implies \:  \displaystyle \int  \bf \frac{dt}{t }  =  log(t)  + c

where c is constant.

Now put t = 2y²+1

\implies \bf  log(2 {y}^{2}  + 1)  + c

Answer :

\displaystyle \int  \bf \frac{4y}{2 {y}^{2} + 1 } dy = log(2 {y}^{2}  + 1)  + c

______________________

Learn more :

∫ 1 dx = x + C

∫ sin x dx = – cos x + C

∫ cos x dx = sin x + C

∫ sec2 dx = tan x + C

∫ csc2 dx = -cot x + C

∫ sec x (tan x) dx = sec x + C

∫ csc x ( cot x) dx = – csc x + C

∫ (1/x) dx = ln |x| + C

∫ ex dx = ex+ C

∫ ax dx = (ax/ln a) + C

____________________

Similar questions