Physics, asked by vllblavanyasaini0409, 7 months ago

evaluate integral of cos(3z+4).dz​

Answers

Answered by Asterinn
9

 \implies \displaystyle \int  \bf \cos(3z  + 4 )\: dz

We will solve the above integration problem by using substitution method :-

 \bf let \: (3z  + 4 )\:  = t

 \bf \:dz  =  \dfrac{dt}{3}

\implies \displaystyle \int  \bf \cos(t)\:  \dfrac{dt}{3}

\implies \dfrac{1}{3}  \displaystyle \int  \bf \cos(t)\:  {dt}

We know that :-

 \underline {\boxed {\displaystyle \int  \bf \cos(x)\:  {dx= sin \: x+ c}}}

\implies \dfrac{1}{3}  \displaystyle \int  \bf \cos(t)  {dt} = \frac{1}{3} sin t+ c

Now put t = 3z+4

\implies \displaystyle   \bf   \frac{1}{3} sin (3z + 4)+ c

Answer :

\displaystyle \int  \bf \cos(3z  + 4 )\: dz = \frac{1}{3} sin (3z + 4)+ c

Where c is constant

Similar questions