Physics, asked by vllblavanyasaini0409, 5 months ago

evaluate integral of x/2+3 dx with limit -2 to 4 ​

Answers

Answered by malavika03
3

Explanation:

The ans for this question is 21

Attachments:
Answered by Asterinn
11

 \implies \displaystyle \sf\int\limits^{4}_{ - 2}  \dfrac{x}{2} + 3  \, \:  dx

We know that :-

\underline{\displaystyle \bf \boxed{\displaystyle \sf\int\limits^{a}_{ b} f(x)  \, \:  dx =g(x)]^{a} _{b} = g(a)  - g(b)}}

\implies \displaystyle \sf\int\limits^{4}_{ - 2}  \dfrac{x}{2} + 3  \, \:  dx = \dfrac{ {x}^{2} }{4} + 3 x]^{ + 4} _{ - 2}

Now put the value of upper limit and lower limit.

\implies  \sf\dfrac{ {4}^{2} }{4} + (3  \times 4)] - \dfrac{ { (- 2)}^{2} }{4} + (3  \times  - 2)

\implies  \sf {4}+ 12 - (1  - 6)

\implies  \sf  16- ( - 5)

\implies  \sf 16 + 5

\implies  \sf21

Answer :

\displaystyle \sf\int\limits^{4}_{ - 2}  \dfrac{x}{2} + 3  \, \:  dx  = 21

Similar questions