evaluate integral of x^2/(x^2+4)(x^2+9) dx
Answers
Answer:
-2/5 tan⁻¹ ( x/2 ) + 3/5 tan⁻¹ ( x/3 ) + c
Step-by-step explanation:
To find----->
∫ x² dx / ( x² + 4 ) ( x² + 9 )
Solution---->
1) Plzz refer the attachment
2) First we do partial fraction for this we put
x² = y , in it we get,
x² / ( x² + 4 ) ( x² + 9 )
= - 4 / 5 ( x² + 4 ) + 9 / 5 ( x² + 9 )
3) Then we integrate it by using formula of integration ,
∫ dx / ( x² + a² ) = 1 / a tan⁻¹ ( x / a ) + C
Additional information----->
1) ∫ xⁿ dx = xⁿ⁺¹ / ( n + 1 ) + C
2) ∫ dx / x = logx + C
3) ∫ eˣ dx = eˣ + C
4) ∫ aˣ dx = aˣ / loga + C
5) ∫ Sinx dx = - Cosx + C
6) ∫ Cosx dx = Sinx + C
7) ∫ Sec²x dx = tanx + C
8) ∫ Secx tanx dx = Secx + C
9) ∫ Cosec²x dx = - Cotx + C
10) ∫ Cosecx Cotx dx = - Cosecx + C
Answer:
i hope it helps.............