Math, asked by chinnichinni3261, 1 month ago

evaluate integral x+1/root x^2-x+1

Attachments:

Answers

Answered by senboni123456
3

Step-by-step explanation:

We have,

I =  \int \frac{x + 1}{ \sqrt{ {x}^{2} - x + 1 }} dx \\

 \implies \: I =   \frac{1}{2} \int \frac{2(x + 1)}{  \sqrt{{x}^{2} - x + 1 }} dx \\

 \implies \: I =   \frac{1}{2} \int \frac{2x + 2}{ \sqrt{ {x}^{2} - x + 1 }} dx \\

 \implies \: I =   \frac{1}{2} \int \frac{2x  - 1 + 3}{  \sqrt{{x}^{2} - x + 1} } dx \\

 \implies \: I =   \frac{1}{2} \int \frac{2x  - 1}{ \sqrt{ {x}^{2} - x + 1 }} dx +  \frac{1}{2} \int \frac{3}{ \sqrt{ {x}^{2} - x + 1 } }   \\

 \implies \: I =   I_{1} +  I_{2}    \\

\tt\:\bold{\purple{Solving\:\: I_{1} :}}

 I_{1} =  \frac{1}{2}   \int \frac{2x - 1}{ \sqrt{ {x}^{2} - x + 1 } } \\

Let x^2-x+1=t^2

\implies\:(2x-1)dx=2t\:dt

So,

 I_{1} =  \frac{1}{2}   \int \frac{2t \: dt}{ \sqrt{  {t}^{2}  } } \\

  \implies \: I_{1} =    \int \frac{t \: dt}{t } \\

  \implies \: I_{1} =    \int  dt\\

  \implies \: I_{1} =    t +  c_{1}\\

  \implies \: I_{1} =    \sqrt{ {x}^{2} - x + 1 } +  c_{1}\\

\tt\:\bold{\purple{Solving\:\: I_{2} :}}

I_{2} =   \frac{1}{2} \int  \frac{3}{ \sqrt{ {x}^{2} - x + 1 } } dx\\

 \implies \: I_{2} =   \frac{3}{2} \int  \frac{1}{ \sqrt{ {x}^{2} - x + 1 } } dx\\

 \implies \: I_{2} =   \frac{3}{2} \int  \frac{1}{ \sqrt{ {x}^{2} -2. (\frac{1}{2} ) x +  \frac{1}{4}   +  \frac{3}{4} } } dx\\

 \implies \: I_{2} =   \frac{3}{2} \int  \frac{1}{ \sqrt{ {x}^{2} -2. (\frac{1}{2} ) x + ( \frac{1}{2})   ^{2}  + ( \frac{  \sqrt{3} }{2} } ) ^{2} } dx\\

 \implies \: I_{2} =   \frac{3}{2} \int  \frac{1}{ \sqrt{ ({x -  \frac{1}{2} })^{2} +  ( \frac{  \sqrt{3} }{2} } ) ^{2} } dx\\

 \implies \: I_{2} =    \ln \bigg| \bigg(x -  \frac{1}{2}  \bigg) +  \sqrt{ {x}^{2}  - x + 1}  \bigg|   +  c_{2} \\

So, required integral

 \implies \: I=   \sqrt{ {x}^{2}   - x + 1}  +  c _{1} +  \ln \bigg| \bigg(x -  \frac{1}{2}  \bigg) +  \sqrt{ {x}^{2}  - x + 1}  \bigg|   +  c_{2} \\

 \implies \: I=   \sqrt{ {x}^{2}   - x + 1}   +  \ln \bigg| \bigg(x -  \frac{1}{2}  \bigg) +  \sqrt{ {x}^{2}  - x + 1}  \bigg|   +  C \\

Where, C=c_{1}+c_{2}

Similar questions