Evaluate integral (x²+2) / (x3+ 6x + 9) dx
Answers
To evaluate this integral, we use method of Substitution.
So, substitute
So, on substituting, the above integral, can be rewritten as
Hence,
Short Cut Trick :-
can be rewritten as
We know,
So, using this, we get
Hence,
Additional Information :-
Step-by-step explanation:
\large\underline{\sf{Solution-}}
Solution−
\begin{gathered}\rm \: \displaystyle\int\rm \frac{ {x}^{2} + 2}{ {x}^{3} + 6x + 9} \: dx \\ \end{gathered}
∫
x
3
+6x+9
x
2
+2
dx
To evaluate this integral, we use method of Substitution.
So, substitute
\begin{gathered}\rm \: {x}^{3} + 6x + 9 = y \\ \end{gathered}
x
3
+6x+9=y
\begin{gathered}\rm \: {3x}^{2} + 6 = \dfrac{dy}{dx} \\ \end{gathered}
3x
2
+6=
dx
dy
\begin{gathered}\rm \: 3({x}^{2} + 2) = \dfrac{dy}{dx} \\ \end{gathered}
3(x
2
+2)=
dx
dy
\begin{gathered}\rm \: ({x}^{2} + 2)dx = \dfrac{dy}{3} \\ \end{gathered}
(x
2
+2)dx=
3
dy
So, on substituting, the above integral, can be rewritten as
\rm \: = \: \dfrac{1}{3}\displaystyle\int\rm \frac{dy}{y} =
3
1
∫
y
dy
\begin{gathered}\rm \: = \: \dfrac{1}{3} \: log |y| + c \\ \end{gathered}
=
3
1
log∣y∣+c
\begin{gathered}\rm \: = \: \dfrac{1}{3} \: log | {x}^{3} + 6x + 9| + c \\ \end{gathered}
=
3
1
log∣x
3
+6x+9∣+c
Hence,
\begin{gathered}\boxed{ \rm{\displaystyle\int\rm \frac{ {x}^{2} + 2}{ {x}^{3} + 6x + 9}dx = \: \dfrac{1}{3} \: log | {x}^{3} + 6x + 9| + c}} \\ \end{gathered}
∫
x
3
+6x+9
x
2
+2
dx=
3
1
log∣x
3
+6x+9∣+c
\rule{190pt}{2pt}
Short Cut Trick :-
\rm \: \displaystyle\int\rm \frac{ {x}^{2} + 2}{ {x}^{3} + 6x + 9} \: dx∫
x
3
+6x+9
x
2
+2
dx
can be rewritten as
\rm \: = \dfrac{1}{3} \displaystyle\int\rm \frac{3 {x}^{2} + 6}{ {x}^{3} + 6x + 9} \: dx=
3
1
∫
x
3
+6x+9
3x
2
+6
dx
We know,
\begin{gathered}\boxed{ \rm{ \:\displaystyle\int\rm \frac{f'(x)}{f(x)}dx \: = \: log |f(x)| + c \: }} \\ \end{gathered}
∫
f(x)
f
′
(x)
dx=log∣f(x)∣+c
So, using this, we get
\begin{gathered}\rm \: = \: \dfrac{1}{3} \: log | {x}^{3} + 6x + 9| + c \\ \end{gathered}
=
3
1
log∣x
3
+6x+9∣+c
Hence,
\begin{gathered}\boxed{ \rm{\displaystyle\int\rm \frac{ {x}^{2} + 2}{ {x}^{3} + 6x + 9}dx = \: \dfrac{1}{3} \: log | {x}^{3} + 6x + 9| + c}} \\ \end{gathered}
∫
x
3
+6x+9
x
2
+2
dx=
3
1
log∣x
3
+6x+9∣+c
\rule{190pt}{2pt}
Additional Information :-
\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}\end{gathered}
f(x)
k
sinx
cosx
sec
2
x
cosec
2
x
secxtanx
cosecxcotx
tanx
x
1
e
x
∫f(x)dx
kx+c
−cosx+c
sinx+c
tanx+c
−cotx+c
secx+c
−cosecx+c
logsecx+c
logx+c
e
x
+c