Math, asked by priyakashyap6057, 1 year ago

evaluate integrate x(tan-1x)2 dx. ]01

(upper limit is 1 and lower limit is 0)

Answers

Answered by Ronye
28

Answer:

Step-by-step explanation:

Attachments:
Answered by rakhithakur
0

Step-by-step explanation:

note first I will solve integration then I will put limit

 \int \: x {( { \tan}^{ - 1} (x))}^{2}dx

using formula

 \int \: (uv)  dx= \\  u \int vdx - \int (\frac{du}{dx}  \int vdx)dx

now( using ILATE) put

u =  {({ \tan }^{ - 1}  x)}^{2}

and

v = x

you will found that

 \int \: x {( { \tan}^{ - 1} (x))}^{2}dx   =  \\  {( { \tan}^{ - 1} x)}^{2}   \times  \frac{ {x}^{2} }{2}  -  \\  \int    \:  \frac{ {x}^{2} }{2} \frac{  ({2 \tan }^{ - 1} x }{1 +  {x}^{2} } \\

let

I'=

\frac{ {x}^{2} }{}( \frac{  { \tan }^{ - 1} x }{1 +  {x}^{2} }) \\

now let

 { \tan}^{ - 1} x = t \\ then \:  \:  \: dx =(  {1 + x}^{2} )dt

on substituting value

I'=

 \int \: t( { \tan }^{2} t)\: dt =  \\  (\int t ({ \sec }^{2} t) )-  \int \:  { {t} }{}  \\  \\  = (t(\tan(t) -  \int1 \times  \tan(t) ) -  \frac{ {t}^{2} }{2}  \\  = (t(\tan(t) -   log_{}( \sec(t) ) ) -  \frac{ {t}^{2} }{2}  \\

Now

 log_{}( \sec(t) )  =  log((1 +  { \tan( { \tan}^{ - 1}x ) })^{ \frac{1}{2} } )  =  \frac{1}{2}  log(1 + x)

therefore

I'=

(t(\tan(t) -   log_{}(  1 + x ) -  \frac{ {t}^{2} }{2}

now substituting these value in I

 \frac{({ { \tan}^{ - 1} x) }^{2}  {x}^{2} }{2}  -    \\ ({ \tan}^{ - 1} x)x +  \frac{1}{2}  log(1 + x)  +   \\  \frac{ {({ \tan }^{ - 1} x)}^{2} }{2}  \\    =  \frac{( { { \tan }^{ - 1} x)}^{2} }{2} ( {x}^{2}  + 1) + \\  x { \tan }^{ - 1}x  +  \\  \frac{1}{2}  log(1 + x)

now on putting limit

(*note=I am taking only upper limit because tan0=0 and log1=0)

SO

I=

 \frac{1}{2} \times  {( \frac{ { \pi} }{4}}^{2} )( {1}^{2}  + 1) - 1( \frac{ \pi}{4} ) +  \frac{1}{2}  log(2)  \\  =  \frac{ { \pi}^{2} }{16}  -  \frac{ \pi}{4}  +  \frac{1}{2}  log(2)

thanks for asking

if you have any problem regarding to this solution

mail me [email protected]

Similar questions