Math, asked by shindeom2021, 5 months ago

evaluate integration 0roπ/4 1/1+cot^3x

Answers

Answered by assingh
25

Topic :-

Integration

To Solve :-

\sf{\displaystyle \int_{0}^{\pi/4}\dfrac{1}{1+cot^3x}dx}

Solution :-

We will start by using property,

\sf{\displaystyle \int_{a}^{b}f(x)dx=\displaystyle \int_{a}^{b}f(a+b-x)dx}

Applying the property,

\sf{\displaystyle\int_{0}^{\pi/4}\dfrac{1}{1+cot^3(0+\dfrac{\pi}{4}-x)}dx}

Now, we can write

\sf{cot(\dfrac{\pi}{4}-x)=\dfrac{cotxcot\dfrac{\pi}{4}+1}{cotx-cot\dfrac{\pi}{4}}}

As,

\sf {cot\dfrac{\pi}{4}=1}

We can write,

\sf{\dfrac{cotxcot\dfrac{\pi}{4}+1}{cotx-cot\dfrac{\pi}{4}}=\dfrac{cotx+1}{cotx-1}}

From formula,

\sf{cot(A-B)=\dfrac{cotBcotA+1}{cotB-cotA}}

Now,

\sf{\dfrac{cotx+1}{cotx-1}=\dfrac{\dfrac{1}{tanx}+1}{\dfrac{1}{tanx}-1}}

\sf{\dfrac{cotx+1}{cotx-1}=\dfrac{1+tanx}{1-tanx}}

So, we can write

\sf {\displaystyle\int_{0}^{\pi/4}\dfrac{1}{1+\left ( \dfrac{1+tanx}{1-tanx} \right )^3}dx}

Now, we can write

\sf{1+(\dfrac{1+tanx}{1-tanx})^3=\dfrac{(1-tanx)^3+(1+tanx)^3}{(1-tanx)^3}}

From formula,

\sf{(a+b)^3=a^3+b^3+3ab(a+b)}

\sf{(a-b)^3=a^3-b^3-3ab(a-b)}

We can write,

\sf{1+\left ( \dfrac{1+tanx}{1-tanx} \right )^3=\dfrac{6tan^2x+2}{1-tan^3x-3tanx+3tan^2x}}

So, we can write,

\sf {\displaystyle \int_{0}^{\pi/4}\dfrac{1-tan^3x-3tanx+3tan^2x}{6tan^2x+2}dx}

\sf {\displaystyle \int_{0}^{\pi/4}\dfrac{3tan^2x+1-tan^3x-3tanx}{2(3tan^2x+1)}dx}\\

\sf{\dfrac{1}{2}\sf {\displaystyle \int_{0}^{\pi/4}1-(\dfrac{tan^3x+3tanx}{3tan^2x+1})dx}}

\sf{\dfrac{1}{2}\displaystyle \int_{0}^{\pi/4}dx-\dfrac{1}{2}\displaystyle \int_{0}^{\pi/4}(\dfrac{sec^2x(tan^3x+3tanx)}{(1+tan^2x)(3tan^2x+1)})dx}

Substitute, u = tanx

\sf{du=sec^2xdx}

Limit changes to :

\sf {u=tan\dfrac{\pi}{4}=1}

u = tan(0) = 0

\sf{\dfrac{1}{2}\left [ x \right ]^\frac{\pi}{4}_0 -\dfrac{1}{2}\displaystyle \int_{0}^{1}\dfrac{u^3+3u}{(u^2+1)(3u^2+1)}du}

\sf{\dfrac{\pi}{8}-\dfrac{1}{2}\displaystyle \int_{0}^{1}\dfrac{4u}{3u^2+1}-\dfrac{u}{u^2+1}du}

Upon solving we get,

\sf{\dfrac{\pi}{8}-\dfrac{1}{2}\left [ \dfrac{4ln(3u^2+1)}{6}-\dfrac{ln(u^2+1)}{2} \right ]^1_0}

\sf{\dfrac{\pi}{8}-\dfrac{1}{2}\left [ \dfrac{4ln(3(1)^2+1)}{6}-\dfrac{ln((1)^2+1)}{2} -\left ( \dfrac{4ln(3(0)^2+1)}{6}-\dfrac{ln((0)^2+1)}{2} \right ) \right ]}

\sf{\dfrac{\pi}{8}-\dfrac{1}{2}\left [ \dfrac{4ln(4)}{6}-\dfrac{ln(2)}{2} -\left ( \dfrac{4ln(1)}{6}-\dfrac{ln(1)}{2} \right ) \right ]}

As we know, ln(1) = 0.

So,

\sf{\dfrac{\pi}{8}-\dfrac{1}{2}\left [ \dfrac{8ln(2)}{6}-\dfrac{ln(2)}{2}  \right ]}

\sf{\dfrac{\pi}{8}-\dfrac{1}{2}ln(2)\left [ \dfrac{4}{3}-\dfrac{1}{2}  \right ]}

\sf{\dfrac{\pi}{8}-\dfrac{1}{2}ln(2)\left [ \dfrac{8-3}{6}  \right ]}

\sf{\dfrac{\pi}{8}-\dfrac{5}{12}ln(2)}

Answer :-

\sf{So,\:answer\:is,\:\:\dfrac{\pi}{8}-\dfrac{5}{12}ln(2)}

Similar questions