Math, asked by nitinsunil6766, 2 months ago

evaluate integration limit0 to π\2 sin²xcos³x x dx class 11​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Let assume that

\rm \longrightarrow \: I = \displaystyle \int_{0}^{ \dfrac{\pi}{2} } \rm \:  {sin}^{2}x \:  {cos}^{3}x \: dx

can be rewritten as

\rm \longrightarrow \: I = \displaystyle \int_{0}^{ \dfrac{\pi}{2} } \rm \:  {sin}^{2}x \:  {cos}^{2}x \: cosx \: dx

\rm \longrightarrow \: I = \displaystyle \int_{0}^{ \dfrac{\pi}{2} } \rm \:  {sin}^{2}x \:(1 -   {sin}^{2}x )\: cosx \: dx

Now, we use substitution method to solve this integral.

\red{\rm :\longmapsto\:Put \: sinx = y} \\ \red{\rm :\longmapsto\:cosx \: dx = dy}

When we use substitution method, we have to change the limits.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y = sinx \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 0 \\ \\ \sf \dfrac{\pi}{2}  & \sf 1 \end{array}} \\ \end{gathered}

So, given integral reduced to

\rm \longrightarrow \: I = \displaystyle \int_{0}^{1} \rm \:  {y}^{2}\:(1 -   {y}^{2})\: \: dy

\rm \longrightarrow \: I = \displaystyle \int_{0}^{1} \rm \:  ({y}^{2}\: -   {y}^{4})\: \: dy

\rm \longrightarrow \: I = \bigg(\dfrac{ {y}^{3} }{3}  - \dfrac{ {y}^{5} }{5} \bigg)_0^1

\rm \longrightarrow \: I = \bigg(\dfrac{1 }{3}  - \dfrac{1}{5} \bigg)

\rm \longrightarrow \: I = \bigg(\dfrac{5 - 3}{15}\bigg)

\rm \longrightarrow \: I = \dfrac{2}{15}

Additional Information :-

Properties of Integration :-

 \displaystyle\sf (1) \int\limits^b_a {f(x)} \, dx = \int\limits^b_a {f(t)}dt

 \displaystyle\sf (2) \int\limits^b_a {f(x)} \, dx =  -  \: \int\limits^a_b {f(x)}dx

\sf (3)  \displaystyle\int\limits^b_a {f(x)} \, dx = \int\limits^c_a {f(x)} \, dx + \int\limits^b_c {f(x)} \, dx \ where\ \ a < c < b

\sf (4) \displaystyle \int\limits^a_0 {f(x)} \, dx =\int\limits^a_0 {f(a - x)}

\sf (5) \displaystyle\int\limits^b_a {f(x)} \, dx = \int\limits^b_a{f(a + b - x)}

Similar questions