Math, asked by neha11puja, 4 months ago

evaluate integration of (1-x)^10 dx​

Answers

Answered by Rahamam1234
4

Step-by-step explanation:

I= integ.of [ 1/x.(1+x^10)].dx

I= integ.of [{(1+x^10)-(x^10)}/x.(1+x^10)].dx

I= integ.of [ 1/x - x^9/(1+x^10)].dx

I = integ.of [ 1/x - 1/10.{10x^9/(1+x^10)}].dx

I = log |x| - (1/10). log |(1+x^10)| + C.

I = (-1/10)[ log | (1+x^10)| - 10.log |x| ]. +C.

I = (-1/10). log | (1+x^10 )/x^10 | +C

Similar questions