Math, asked by keerthisukee2001, 10 months ago

evaluate integration of sin²x / 1+cosx dx​

Answers

Answered by nagathegenius
6

Answer:

Step-by-step explanation:

∫sin^2 x dx /1+cosx

∫1-cos^2 x dx /1+cos x

∫(1-cosx) dx

x-sinx+c

Answered by BrainlyPopularman
14

Answer:

solving \:  \: the \:  \: given \:  \: function =  >  \\  \\ f(x) =   \frac{ {sin}^{2} (x)}{1 + cosx}  \\  \\ f(x) =  \frac{1 -  {cos}^{2}(x) }{1 + cos(x)}  \\  \\ f(x) =  \frac{(1 +  \cos(x ))(1 - cosx)}{1 + cosx}  \\  \\ f(x) = 1 - cosx \\  \\ now \:  \: integrate \:  \: this \:  \: function =  >  \\  \\ integration \:  = x - sinx + c

Hope you like it...

Similar questions