Math, asked by tanishkajadhav982, 1 month ago

evaluate integration of √(x)+ 1/ x + √(x) dx​

Attachments:

Answers

Answered by sandy1816
12

Answer:

your answer attached in the photo

Attachments:
Answered by VishnuPriya2801
13

Answer:-

We have to evaluate:

  \displaystyle \sf \int{\dfrac{ \sqrt{x} + 1 }{x +  \sqrt{x} } } \: dx

Taking √x common in denominator we get;

 \implies \displaystyle \int \sf \frac{  \cancel{(\sqrt{x}  + 1)}}{ \sqrt{x} \cancel{( \sqrt{x}  + 1)} }  \: dx \\  \\  \\   (\because \sf \sqrt{a}  \times  \sqrt{a}  = a ) \\  \\  \\ \implies \displaystyle \int \sf \:  \frac{1}{ {x}^{ \frac{1}{2} } }   \: dx\\  \\  \\ ( \because \sf   \sqrt[n]{x}  =  {x}^{ \frac{1}{n} } )

Using 1/aⁿ = a⁻ⁿ we get;

 \: \implies \displaystyle \int \sf \:  {x}^{ \frac{ - 1}{2} }  dx \\

Now;

using ∫ xⁿ dx = (xⁿ⁺¹) / n + 1 we get;

  \implies  \sf \:  \frac{ {x}^{ \frac{ - 1}{2}  + 1} }{ \frac{ - 1}{2}  + 1}   + c \\  \\  \\ \implies  \sf \: {x}^{ \frac{1}{2} }  \times  \frac{1}{ \frac{1}{2} } + c \\  \\  \\ \implies  \sf \: \sqrt{x}  \times 2 + c \\  \\  \\ \implies \underline{ \underline{  \sf \:2 \sqrt{x} + c}}

Similar questions