Math, asked by mahichopdekar, 1 month ago

evaluate integration sin2x/(sinx)²​

Answers

Answered by Anonymous
26

\displaystyle \int \bf \:  \frac{sin2x}{ {(sin \: x)}^{2} }  \: dx \\  = \displaystyle \int \bf \:  \frac{2 \: sin \: x \:  \: cox \: x}{sin \: x \:  \: sin \: x}  \: dx \\  =2 \displaystyle \int \bf \:  \frac{cos \: x}{ \: sin \: x}  \: dx \\  \\   \sf \: substitute \:  \: u \:  =  \: sin \: x  \\  \bf \therefore \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  du \:  = cos \: x \: dx\\ \\   = 2\displaystyle \int \bf \:  \frac{1}{u} du \\   = 2 \bf \: ln |u|  + c \\ = 2 \bf \: ln |sin \: x|  + c

Similar questions