Math, asked by lalchhanchhuahi8182, 12 hours ago

Evaluate intergal 1/sin(x) +root3cos(x). DX

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm  \frac{dx}{sinx +  \sqrt{3} cosx}

On divide and multiply the denominator by 2, we get

\rm \:  =  \: \dfrac{1}{2}\displaystyle\int\rm  \frac{dx}{\dfrac{1}{2}sinx + \dfrac{ \sqrt{3} }{2}cosx}

can be further rewritten as

\rm \:  =  \: \dfrac{1}{2}\displaystyle\int\rm  \frac{dx}{sin\dfrac{\pi}{6}sinx + cos\dfrac{\pi}{6}cosx}

We know,

\boxed{\tt{ cosx \: cosy \:  +  \: sinx \: siny \:  =  \: cos(x - y) \: }} \\

So, using this identity, we get

\rm \:  =  \: \dfrac{1}{2}\displaystyle\int\rm  \frac{dx}{cos\bigg(x - \dfrac{\pi}{6}\bigg) }

\rm \:  =  \: \dfrac{1}{2}\displaystyle\int\rm  sec\bigg(x - \dfrac{\pi}{6}\bigg) \: dx

We know,

\boxed{\tt{ \displaystyle\int\rm secx \:  =  \: log |secx + tanx|  + c \: }} \\

So, using this result, we get

\rm \:  =  \: \dfrac{1}{2}log\bigg |sec\bigg(x - \dfrac{\pi}{6}\bigg)  + tan\bigg(x - \dfrac{\pi}{6}\bigg) \bigg|  + c \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

LEARN MORE

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by OoAryanKingoO78
10

Answer:

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm  \frac{dx}{sinx +  \sqrt{3} cosx}

On divide and multiply the denominator by 2, we get

\rm \:  =  \: \dfrac{1}{2}\displaystyle\int\rm  \frac{dx}{\dfrac{1}{2}sinx + \dfrac{ \sqrt{3} }{2}cosx}

can be further rewritten as

\rm \:  =  \: \dfrac{1}{2}\displaystyle\int\rm  \frac{dx}{sin\dfrac{\pi}{6}sinx + cos\dfrac{\pi}{6}cosx}

We know,

\boxed{\tt{ cosx \: cosy \:  +  \: sinx \: siny \:  =  \: cos(x - y) \: }} \\

So, using this identity, we get

\rm \:  =  \: \dfrac{1}{2}\displaystyle\int\rm  \frac{dx}{cos\bigg(x - \dfrac{\pi}{6}\bigg) }

\rm \:  =  \: \dfrac{1}{2}\displaystyle\int\rm  sec\bigg(x - \dfrac{\pi}{6}\bigg) \: dx

We know,

\boxed{\tt{ \displaystyle\int\rm secx \:  =  \: log |secx + tanx|  + c \: }} \\

So, using this result, we get

\rm \:  =  \: \dfrac{1}{2}log\bigg |sec\bigg(x - \dfrac{\pi}{6}\bigg)  + tan\bigg(x - \dfrac{\pi}{6}\bigg) \bigg|  + c \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

LEARN MORE

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions