Math, asked by sayanacharjee370, 9 months ago

evaluate intregation of cosx /cos(x-a) ×dx​

Answers

Answered by kaushik05
5

To Integrate :

 \star \int \:  \frac{ cosx}{ cos(x - a )} dx \\

By substitution :

Let , x- a = t Or x = t+a

=> dx = dt

 \implies \:  \int \:  \frac{cos \: (t + a)}{cos \: t} dt  \\

As we know that :

 \star \boxed{ \bold{ \cos(a + b)  =  \cos(a)  \cos(b)  -  \sin(a)  \sin(b) }}

 \implies \:  \int \:  \frac{ \cos(t)  \cos(a)  -  \sin(t) \:  \sin(a)  }{ \cos(t) } dt \\  \\  \implies \:  \cos(a)  \int \: dt -  \sin(a)  \int \frac{ \sin(t) }{ \cos(t) } dt \\  \\ \implies \:  \cos( a)   \int dt -  \sin(a)  \int \:  \tan(t) dt \\  \\  \implies \:  \cos(a) (t) -  \sin(a) ( ln( \sec(t) ) ) + c

• Now , put t = x-a we get ,

 \implies(x - a) \cos(a)  -  \sin(a) ( ln( \sec(x - a) ) ) + c

Formula :

 \star \boxed{ \bold{  \int \: tan \: xdx =  ln( sec \: x)  + c}} \\

Similar questions