Math, asked by Anonymous, 1 year ago

Evaluate it

cot \: = \: \frac{15}{8} \\ \\ \frac{(2 \: + \: 2sin)(1 \: - \: sin)}{(1 + cos)(2 - 2cos)} <br />

Answers

Answered by shpriyanshu
3
2(1+sin theta)(1-sin theta)/(1-cos theta)(1+cos theta)2

2{1^2 - sin^2 theta}/2{1^2- cos^2theta}

; 1-sin^2 theta / 1- cos^2 theta

; cos^2 theta / sin^2 theta

; cot^2 theta

given cot theta=15/8
there for
cot^2 theta =(15/8)^2=225/64

is your answer

shpriyanshu: plz mark as brainlist bro
Answered by TANU81
2
Hi there !

 \frac{(2 + 2sina)(1 - sina)}{(1 + cosa)(2 - 2cosa)}  \\  \\  =  \frac{2(1 + sina)(1 - sina)}{2(1  + cosa)(1 - cosa)}  \\

Two will cancel, we get :-


 \frac{1 -  {sin}^{2}a }{1 -  {cos}^{2}a }

(Using identity 1-sin2a = cos2A
and 1-cos2a = sin2a )


 \frac{ {cos}^{2} a}{ {sin}^{2}a }  =  { \cot \: a }^{2}

In question given that, (15/8)^2 = 225/64

Thanks :)
Similar questions